LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
zlaqhb.f
Go to the documentation of this file.
1 *> \brief \b ZLAQHB scales a Hermitian band matrix, using scaling factors computed by cpbequ.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZLAQHB + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqhb.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqhb.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqhb.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZLAQHB( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER EQUED, UPLO
25 * INTEGER KD, LDAB, N
26 * DOUBLE PRECISION AMAX, SCOND
27 * ..
28 * .. Array Arguments ..
29 * DOUBLE PRECISION S( * )
30 * COMPLEX*16 AB( LDAB, * )
31 * ..
32 *
33 *
34 *> \par Purpose:
35 * =============
36 *>
37 *> \verbatim
38 *>
39 *> ZLAQHB equilibrates a Hermitian band matrix A
40 *> using the scaling factors in the vector S.
41 *> \endverbatim
42 *
43 * Arguments:
44 * ==========
45 *
46 *> \param[in] UPLO
47 *> \verbatim
48 *> UPLO is CHARACTER*1
49 *> Specifies whether the upper or lower triangular part of the
50 *> symmetric matrix A is stored.
51 *> = 'U': Upper triangular
52 *> = 'L': Lower triangular
53 *> \endverbatim
54 *>
55 *> \param[in] N
56 *> \verbatim
57 *> N is INTEGER
58 *> The order of the matrix A. N >= 0.
59 *> \endverbatim
60 *>
61 *> \param[in] KD
62 *> \verbatim
63 *> KD is INTEGER
64 *> The number of super-diagonals of the matrix A if UPLO = 'U',
65 *> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
66 *> \endverbatim
67 *>
68 *> \param[in,out] AB
69 *> \verbatim
70 *> AB is COMPLEX*16 array, dimension (LDAB,N)
71 *> On entry, the upper or lower triangle of the symmetric band
72 *> matrix A, stored in the first KD+1 rows of the array. The
73 *> j-th column of A is stored in the j-th column of the array AB
74 *> as follows:
75 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
76 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
77 *>
78 *> On exit, if INFO = 0, the triangular factor U or L from the
79 *> Cholesky factorization A = U**H *U or A = L*L**H of the band
80 *> matrix A, in the same storage format as A.
81 *> \endverbatim
82 *>
83 *> \param[in] LDAB
84 *> \verbatim
85 *> LDAB is INTEGER
86 *> The leading dimension of the array AB. LDAB >= KD+1.
87 *> \endverbatim
88 *>
89 *> \param[out] S
90 *> \verbatim
91 *> S is DOUBLE PRECISION array, dimension (N)
92 *> The scale factors for A.
93 *> \endverbatim
94 *>
95 *> \param[in] SCOND
96 *> \verbatim
97 *> SCOND is DOUBLE PRECISION
98 *> Ratio of the smallest S(i) to the largest S(i).
99 *> \endverbatim
100 *>
101 *> \param[in] AMAX
102 *> \verbatim
103 *> AMAX is DOUBLE PRECISION
104 *> Absolute value of largest matrix entry.
105 *> \endverbatim
106 *>
107 *> \param[out] EQUED
108 *> \verbatim
109 *> EQUED is CHARACTER*1
110 *> Specifies whether or not equilibration was done.
111 *> = 'N': No equilibration.
112 *> = 'Y': Equilibration was done, i.e., A has been replaced by
113 *> diag(S) * A * diag(S).
114 *> \endverbatim
115 *
116 *> \par Internal Parameters:
117 * =========================
118 *>
119 *> \verbatim
120 *> THRESH is a threshold value used to decide if scaling should be done
121 *> based on the ratio of the scaling factors. If SCOND < THRESH,
122 *> scaling is done.
123 *>
124 *> LARGE and SMALL are threshold values used to decide if scaling should
125 *> be done based on the absolute size of the largest matrix element.
126 *> If AMAX > LARGE or AMAX < SMALL, scaling is done.
127 *> \endverbatim
128 *
129 * Authors:
130 * ========
131 *
132 *> \author Univ. of Tennessee
133 *> \author Univ. of California Berkeley
134 *> \author Univ. of Colorado Denver
135 *> \author NAG Ltd.
136 *
137 *> \date September 2012
138 *
139 *> \ingroup complex16OTHERauxiliary
140 *
141 * =====================================================================
142  SUBROUTINE zlaqhb( UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED )
143 *
144 * -- LAPACK auxiliary routine (version 3.4.2) --
145 * -- LAPACK is a software package provided by Univ. of Tennessee, --
146 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
147 * September 2012
148 *
149 * .. Scalar Arguments ..
150  CHARACTER EQUED, UPLO
151  INTEGER KD, LDAB, N
152  DOUBLE PRECISION AMAX, SCOND
153 * ..
154 * .. Array Arguments ..
155  DOUBLE PRECISION S( * )
156  COMPLEX*16 AB( ldab, * )
157 * ..
158 *
159 * =====================================================================
160 *
161 * .. Parameters ..
162  DOUBLE PRECISION ONE, THRESH
163  parameter ( one = 1.0d+0, thresh = 0.1d+0 )
164 * ..
165 * .. Local Scalars ..
166  INTEGER I, J
167  DOUBLE PRECISION CJ, LARGE, SMALL
168 * ..
169 * .. External Functions ..
170  LOGICAL LSAME
171  DOUBLE PRECISION DLAMCH
172  EXTERNAL lsame, dlamch
173 * ..
174 * .. Intrinsic Functions ..
175  INTRINSIC dble, max, min
176 * ..
177 * .. Executable Statements ..
178 *
179 * Quick return if possible
180 *
181  IF( n.LE.0 ) THEN
182  equed = 'N'
183  RETURN
184  END IF
185 *
186 * Initialize LARGE and SMALL.
187 *
188  small = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
189  large = one / small
190 *
191  IF( scond.GE.thresh .AND. amax.GE.small .AND. amax.LE.large ) THEN
192 *
193 * No equilibration
194 *
195  equed = 'N'
196  ELSE
197 *
198 * Replace A by diag(S) * A * diag(S).
199 *
200  IF( lsame( uplo, 'U' ) ) THEN
201 *
202 * Upper triangle of A is stored in band format.
203 *
204  DO 20 j = 1, n
205  cj = s( j )
206  DO 10 i = max( 1, j-kd ), j - 1
207  ab( kd+1+i-j, j ) = cj*s( i )*ab( kd+1+i-j, j )
208  10 CONTINUE
209  ab( kd+1, j ) = cj*cj*dble( ab( kd+1, j ) )
210  20 CONTINUE
211  ELSE
212 *
213 * Lower triangle of A is stored.
214 *
215  DO 40 j = 1, n
216  cj = s( j )
217  ab( 1, j ) = cj*cj*dble( ab( 1, j ) )
218  DO 30 i = j + 1, min( n, j+kd )
219  ab( 1+i-j, j ) = cj*s( i )*ab( 1+i-j, j )
220  30 CONTINUE
221  40 CONTINUE
222  END IF
223  equed = 'Y'
224  END IF
225 *
226  RETURN
227 *
228 * End of ZLAQHB
229 *
230  END
subroutine zlaqhb(UPLO, N, KD, AB, LDAB, S, SCOND, AMAX, EQUED)
ZLAQHB scales a Hermitian band matrix, using scaling factors computed by cpbequ.
Definition: zlaqhb.f:143