next up previous contents index
Next: Example 8.6.2. Up: Numerical Examples Previous: Numerical Examples   Contents   Index

Example 8.6.1.

The first example demonstrates the importance of the choice of starting vector when the $B$ matrix is singular. The matrices used in this example come from the shaft model using a fine mesh, and the order of the matrices $\{A,B\}$ is 800. A shift of $\sigma=100i$ was used and complete reorthogonalization was employed. The following table illustrates one ill effect which may result when the Lanczos vectors do not belong to the range of $H^{-1} B$. The symmetric indefinite Lanczos procedure was executed twice with an initial vector of all ones. In the first run, the initial vector is preprocessed by multiplying it by $H^{-1} B$, while in the second run, no preprocessing is used. The preprocessing step dramatically improves the quality of the Ritz pairs, as measured by the residuals $ \Vert A\tilde{x} - \tilde{\lambda}B\tilde{x}\Vert$, by ensuring that the Lanczos vectors, and hence the Ritz vectors, belong to the range of $H^{-1} B$.

     
Ritz value $ \Vert A\tilde{x} - \tilde{\lambda}B\tilde{x}\Vert$ $ \Vert A\tilde{x} - \tilde{\lambda}B\tilde{x}\Vert$
$\tilde{\lambda}$ (preprocessed initial vector) (no preprocessing)
$ -4.09e\!-\!06 + 5.63e\!+\!01$ $ 1.88e\!-\!08$ $ 3.05e\!-\!03 $
$ -4.15e\!-\!06 - 5.63e\!+\!01$ $ 1.45e\!-\!07$ $ 1.10e\!-\!02 $
$ -1.30e\!-\!04 + 3.55e\!+\!02$ $ 6.09e\!-\!07$ $ 5.48e\!-\!02 $
$ -1.31e\!-\!04 - 3.55e\!+\!02$ $ 5.24e\!-\!07$ $ 9.72e\!-\!02 $
$ -8.58e\!-\!04 + 1.00e\!+\!03$ $ 8.57e\!-\!07$ $ 2.85e\!-\!01 $
$ -8.65e\!-\!04 - 1.00e\!+\!03$ $ 8.12e\!-\!07 $ $ 3.50e\!-\!01 $


next up previous contents index
Next: Example 8.6.2. Up: Numerical Examples Previous: Numerical Examples   Contents   Index
Susan Blackford 2000-11-20