SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pcgeqrrv.f
Go to the documentation of this file.
1 SUBROUTINE pcgeqrrv( M, N, A, IA, JA, DESCA, TAU, WORK )
2*
3* -- ScaLAPACK routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 28, 2001
7*
8* .. Scalar Arguments ..
9 INTEGER IA, JA, M, N
10* ..
11* .. Array Arguments ..
12 INTEGER DESCA( * )
13 COMPLEX A( * ), TAU( * ), WORK( * )
14* ..
15*
16* Purpose
17* =======
18*
19* PCGEQRRV computes sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from Q, R
20* computed by PCGEQRF.
21*
22* Notes
23* =====
24*
25* Each global data object is described by an associated description
26* vector. This vector stores the information required to establish
27* the mapping between an object element and its corresponding process
28* and memory location.
29*
30* Let A be a generic term for any 2D block cyclicly distributed array.
31* Such a global array has an associated description vector DESCA.
32* In the following comments, the character _ should be read as
33* "of the global array".
34*
35* NOTATION STORED IN EXPLANATION
36* --------------- -------------- --------------------------------------
37* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
38* DTYPE_A = 1.
39* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
40* the BLACS process grid A is distribu-
41* ted over. The context itself is glo-
42* bal, but the handle (the integer
43* value) may vary.
44* M_A (global) DESCA( M_ ) The number of rows in the global
45* array A.
46* N_A (global) DESCA( N_ ) The number of columns in the global
47* array A.
48* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
49* the rows of the array.
50* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
51* the columns of the array.
52* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
53* row of the array A is distributed.
54* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
55* first column of the array A is
56* distributed.
57* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
58* array. LLD_A >= MAX(1,LOCr(M_A)).
59*
60* Let K be the number of rows or columns of a distributed matrix,
61* and assume that its process grid has dimension p x q.
62* LOCr( K ) denotes the number of elements of K that a process
63* would receive if K were distributed over the p processes of its
64* process column.
65* Similarly, LOCc( K ) denotes the number of elements of K that a
66* process would receive if K were distributed over the q processes of
67* its process row.
68* The values of LOCr() and LOCc() may be determined via a call to the
69* ScaLAPACK tool function, NUMROC:
70* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
71* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
72* An upper bound for these quantities may be computed by:
73* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
74* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
75*
76* Arguments
77* =========
78*
79* M (global input) INTEGER
80* The number of rows to be operated on, i.e. the number of rows
81* of the distributed submatrix sub( A ). M >= 0.
82*
83* N (global input) INTEGER
84* The number of columns to be operated on, i.e. the number of
85* columns of the distributed submatrix sub( A ). N >= 0.
86*
87* A (local input/local output) COMPLEX pointer into the
88* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
89* On entry, sub( A ) contains the the factors Q and R computed
90* by PCGEQRF. On exit, the original matrix is restored.
91*
92* IA (global input) INTEGER
93* The row index in the global array A indicating the first
94* row of sub( A ).
95*
96* JA (global input) INTEGER
97* The column index in the global array A indicating the
98* first column of sub( A ).
99*
100* DESCA (global and local input) INTEGER array of dimension DLEN_.
101* The array descriptor for the distributed matrix A.
102*
103* TAU (local input) COMPLEX, array, dimension
104* LOCc(JA+MIN(M,N)-1). This array contains the scalar factors
105* TAU of the elementary reflectors computed by PCGEQRF. TAU
106* is tied to the distributed matrix A.
107*
108* WORK (local workspace) COMPLEX array, dimension (LWORK)
109* LWORK = NB_A * ( 2*Mp0 + Nq0 + NB_A ), where
110* Mp0 = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ) * NB_A,
111* Nq0 = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ) * MB_A,
112* IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
113* IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
114* NPROW ),
115* IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
116* NPCOL ),
117* and NUMROC, INDXG2P are ScaLAPACK tool functions;
118* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
119* the subroutine BLACS_GRIDINFO.
120*
121* =====================================================================
122*
123* .. Parameters ..
124 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
125 $ LLD_, MB_, M_, NB_, N_, RSRC_
126 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
127 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
128 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
129 COMPLEX ONE, ZERO
130 parameter( one = ( 1.0e+0, 0.0e+0 ),
131 $ zero = ( 0.0e+0, 0.0e+0 ) )
132* ..
133* .. Local Scalars ..
134 CHARACTER COLBTOP, ROWBTOP
135 INTEGER IACOL, IAROW, I, ICTXT, IIA, IPT, IPV, IPW,
136 $ IROFF, IV, J, JB, JJA, JL, JN, K, MP, MYCOL,
137 $ MYROW, NPCOL, NPROW
138* ..
139* .. Local Arrays ..
140 INTEGER DESCV( DLEN_ )
141* ..
142* .. External Subroutines ..
143 EXTERNAL blacs_gridinfo, descset, infog2l, pclacpy,
144 $ pclarfb, pclarft, pclaset, pb_topget,
145 $ pb_topset
146* ..
147* .. External Functions ..
148 INTEGER ICEIL, INDXG2P, NUMROC
149 EXTERNAL iceil, indxg2p, numroc
150* ..
151* .. Intrinsic Functions ..
152 INTRINSIC max, min, mod
153* ..
154* .. Executable Statements ..
155*
156* Get grid parameters
157*
158 ictxt = desca( ctxt_ )
159 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
160*
161 iroff = mod( ia-1, desca( mb_ ) )
162 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
163 $ iarow, iacol )
164 mp = numroc( m+iroff, desca( mb_ ), myrow, iarow, nprow )
165 ipv = 1
166 ipt = ipv + mp * desca( nb_ )
167 ipw = ipt + desca( nb_ ) * desca( nb_ )
168 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
169 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
170 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'D-ring' )
171 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
172*
173 k = min( m, n )
174 jn = min( iceil( ja, desca( nb_ ) ) * desca( nb_ ), ja+k-1 )
175 jl = max( ( (ja+k-2) / desca( nb_ ) ) * desca( nb_ ) + 1, ja )
176*
177 CALL descset( descv, m+iroff, desca( nb_ ), desca( mb_ ),
178 $ desca( nb_ ), iarow, indxg2p( jl, desca( nb_ ),
179 $ mycol, desca( csrc_ ), npcol ), ictxt,
180 $ max( 1, mp ) )
181*
182 DO 10 j = jl, jn+1, -desca( nb_ )
183 jb = min( ja+k-j, desca( nb_ ) )
184 i = ia + j - ja
185 iv = 1 + j - ja + iroff
186*
187* Compute upper triangular matrix T
188*
189 CALL pclarft( 'Forward', 'Columnwise', m-i+ia, jb, a, i, j,
190 $ desca, tau, work( ipt ), work( ipw ) )
191*
192* Copy Householder vectors into workspace
193*
194 CALL pclacpy( 'Lower', m-i+ia, jb, a, i, j, desca, work( ipv ),
195 $ iv, 1, descv )
196 CALL pclaset( 'Upper', m-i+ia, jb, zero, one, work( ipv ), iv,
197 $ 1, descv )
198*
199* Zeroes the strict lower triangular part of sub( A ) to get
200* block column of R
201*
202 CALL pclaset( 'Lower', m-i+ia-1, jb, zero, zero, a, i+1, j,
203 $ desca )
204*
205* Apply block Householder transformation
206*
207 CALL pclarfb( 'Left', 'No transpose', 'Forward', 'Columnwise',
208 $ m-i+ia, n-j+ja, jb, work( ipv ), iv, 1, descv,
209 $ work( ipt ), a, i, j, desca, work( ipw ) )
210*
211 descv( csrc_ ) = mod( descv( csrc_ ) + npcol - 1, npcol )
212*
213 10 CONTINUE
214*
215* Handle first block separately
216*
217 jb = jn - ja + 1
218*
219* Compute upper triangular matrix T
220*
221 CALL pclarft( 'Forward', 'Columnwise', m, jb, a, ia, ja, desca,
222 $ tau, work( ipt ), work( ipw ) )
223*
224* Copy Householder vectors into workspace
225*
226 CALL pclacpy( 'Lower', m, jb, a, ia, ja, desca, work( ipv ),
227 $ iroff+1, 1, descv )
228 CALL pclaset( 'Upper', m, jb, zero, one, work, iroff+1, 1, descv )
229*
230* Zeroes the strict lower triangular part of sub( A ) to get block
231* column of R
232*
233 CALL pclaset( 'Lower', m-1, jb, zero, zero, a, ia+1, ja, desca )
234*
235* Apply block Householder transformation
236*
237 CALL pclarfb( 'Left', 'No transpose', 'Forward', 'Columnwise', m,
238 $ n, jb, work( ipv ), iroff+1, 1, descv, work( ipt ),
239 $ a, ia, ja, desca, work( ipw ) )
240*
241 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
242 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
243*
244 RETURN
245*
246* End of PCGEQRRV
247*
248 END
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition pcblastst.f:7508
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pcgeqrrv(m, n, a, ia, ja, desca, tau, work)
Definition pcgeqrrv.f:2
subroutine pclacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
Definition pclacpy.f:3
subroutine pclarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pclarfb.f:3
subroutine pclarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pclarft.f:3