SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pslaqge.f
Go to the documentation of this file.
1 SUBROUTINE pslaqge( M, N, A, IA, JA, DESCA, R, C, ROWCND, COLCND,
2 $ AMAX, EQUED )
3*
4* -- ScaLAPACK auxiliary routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 CHARACTER EQUED
11 INTEGER IA, JA, M, N
12 REAL AMAX, COLCND, ROWCND
13* ..
14* .. Array Arguments ..
15 INTEGER DESCA( * )
16 REAL A( * ), C( * ), R( * )
17* ..
18*
19* Purpose
20* =======
21*
22* PSLAQGE equilibrates a general M-by-N distributed matrix
23* sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling
24* factors in the vectors R and C.
25*
26* Notes
27* =====
28*
29* Each global data object is described by an associated description
30* vector. This vector stores the information required to establish
31* the mapping between an object element and its corresponding process
32* and memory location.
33*
34* Let A be a generic term for any 2D block cyclicly distributed array.
35* Such a global array has an associated description vector DESCA.
36* In the following comments, the character _ should be read as
37* "of the global array".
38*
39* NOTATION STORED IN EXPLANATION
40* --------------- -------------- --------------------------------------
41* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
42* DTYPE_A = 1.
43* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
44* the BLACS process grid A is distribu-
45* ted over. The context itself is glo-
46* bal, but the handle (the integer
47* value) may vary.
48* M_A (global) DESCA( M_ ) The number of rows in the global
49* array A.
50* N_A (global) DESCA( N_ ) The number of columns in the global
51* array A.
52* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
53* the rows of the array.
54* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
55* the columns of the array.
56* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
57* row of the array A is distributed.
58* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
59* first column of the array A is
60* distributed.
61* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
62* array. LLD_A >= MAX(1,LOCr(M_A)).
63*
64* Let K be the number of rows or columns of a distributed matrix,
65* and assume that its process grid has dimension p x q.
66* LOCr( K ) denotes the number of elements of K that a process
67* would receive if K were distributed over the p processes of its
68* process column.
69* Similarly, LOCc( K ) denotes the number of elements of K that a
70* process would receive if K were distributed over the q processes of
71* its process row.
72* The values of LOCr() and LOCc() may be determined via a call to the
73* ScaLAPACK tool function, NUMROC:
74* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
75* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
76* An upper bound for these quantities may be computed by:
77* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
78* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
79*
80* Arguments
81* =========
82*
83* M (global input) INTEGER
84* The number of rows to be operated on i.e the number of rows
85* of the distributed submatrix sub( A ). M >= 0.
86*
87* N (global input) INTEGER
88* The number of columns to be operated on i.e the number of
89* columns of the distributed submatrix sub( A ). N >= 0.
90*
91* A (local input/local output) REAL pointer into the
92* local memory to an array of dimension (LLD_A,LOCc(JA+N-1))
93* containing on entry the M-by-N matrix sub( A ). On exit,
94* the equilibrated distributed matrix. See EQUED for the
95* form of the equilibrated distributed submatrix.
96*
97* IA (global input) INTEGER
98* The row index in the global array A indicating the first
99* row of sub( A ).
100*
101* JA (global input) INTEGER
102* The column index in the global array A indicating the
103* first column of sub( A ).
104*
105* DESCA (global and local input) INTEGER array of dimension DLEN_.
106* The array descriptor for the distributed matrix A.
107*
108* R (local input) REAL array, dimension LOCr(M_A)
109* The row scale factors for sub( A ). R is aligned with the
110* distributed matrix A, and replicated across every process
111* column. R is tied to the distributed matrix A.
112*
113* C (local input) REAL array, dimension LOCc(N_A)
114* The column scale factors of sub( A ). C is aligned with the
115* distributed matrix A, and replicated down every process
116* row. C is tied to the distributed matrix A.
117*
118* ROWCND (global input) REAL
119* The global ratio of the smallest R(i) to the largest R(i),
120* IA <= i <= IA+M-1.
121*
122* COLCND (global input) REAL
123* The global ratio of the smallest C(i) to the largest C(i),
124* JA <= j <= JA+N-1.
125*
126* AMAX (global input) REAL
127* Absolute value of largest distributed submatrix entry.
128*
129* EQUED (global output) CHARACTER
130* Specifies the form of equilibration that was done.
131* = 'N': No equilibration
132* = 'R': Row equilibration, i.e., sub( A ) has been pre-
133* multiplied by diag(R(IA:IA+M-1)),
134* = 'C': Column equilibration, i.e., sub( A ) has been post-
135* multiplied by diag(C(JA:JA+N-1)),
136* = 'B': Both row and column equilibration, i.e., sub( A )
137* has been replaced by
138* diag(R(IA:IA+M-1)) * sub( A ) * diag(C(JA:JA+N-1)).
139*
140* Internal Parameters
141* ===================
142*
143* THRESH is a threshold value used to decide if row or column scaling
144* should be done based on the ratio of the row or column scaling
145* factors. If ROWCND < THRESH, row scaling is done, and if
146* COLCND < THRESH, column scaling is done.
147*
148* LARGE and SMALL are threshold values used to decide if row scaling
149* should be done based on the absolute size of the largest matrix
150* element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
151*
152* =====================================================================
153*
154* .. Parameters ..
155 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
156 $ lld_, mb_, m_, nb_, n_, rsrc_
157 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
158 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
159 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
160 REAL ONE, THRESH
161 parameter( one = 1.0e+0, thresh = 0.1e+0 )
162* ..
163* .. Local Scalars ..
164 INTEGER I, IACOL, IAROW, ICOFF, ICTXT, IIA, IOFFA,
165 $ iroff, j, jja, lda, mp, mycol, myrow, npcol,
166 $ nprow, nq
167 REAL CJ, LARGE, SMALL
168* ..
169* .. External Subroutines ..
170 EXTERNAL blacs_gridinfo, infog2l
171* ..
172* .. External Functions ..
173 INTEGER NUMROC
174 REAL PSLAMCH
175 EXTERNAL numroc, pslamch
176* ..
177* .. Intrinsic Functions ..
178 INTRINSIC mod
179* ..
180* .. Executable Statements ..
181*
182* Quick return if possible
183*
184 IF( m.LE.0 .OR. n.LE.0 ) THEN
185 equed = 'N'
186 RETURN
187 END IF
188*
189* Get grid parameters and compute local indexes
190*
191 ictxt = desca( ctxt_ )
192 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
193 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
194 $ iarow, iacol )
195 iroff = mod( ia-1, desca( mb_ ) )
196 icoff = mod( ja-1, desca( nb_ ) )
197 mp = numroc( m+iroff, desca( mb_ ), myrow, iarow, nprow )
198 nq = numroc( n+icoff, desca( nb_ ), mycol, iacol, npcol )
199 IF( myrow.EQ.iarow )
200 $ mp = mp - iroff
201 IF( mycol.EQ.iacol )
202 $ nq = nq - icoff
203 lda = desca( lld_ )
204*
205* Initialize LARGE and SMALL.
206*
207 small = pslamch( ictxt, 'Safe minimum' ) /
208 $ pslamch( ictxt, 'Precision' )
209 large = one / small
210*
211 IF( rowcnd.GE.thresh .AND. amax.GE.small .AND. amax.LE.large )
212 $ THEN
213*
214* No row scaling
215*
216 IF( colcnd.GE.thresh ) THEN
217*
218* No column scaling
219*
220 equed = 'N'
221*
222 ELSE
223*
224* Column scaling
225*
226 ioffa = (jja-1)*lda
227 DO 20 j = jja, jja+nq-1
228 cj = c( j )
229 DO 10 i = iia, iia+mp-1
230 a( ioffa + i ) = cj*a( ioffa + i )
231 10 CONTINUE
232 ioffa = ioffa + lda
233 20 CONTINUE
234 equed = 'C'
235 END IF
236*
237 ELSE IF( colcnd.GE.thresh ) THEN
238*
239* Row scaling, no column scaling
240*
241 ioffa = (jja-1)*lda
242 DO 40 j = jja, jja+nq-1
243 DO 30 i = iia, iia+mp-1
244 a( ioffa + i ) = r( i )*a( ioffa + i )
245 30 CONTINUE
246 ioffa = ioffa + lda
247 40 CONTINUE
248 equed = 'R'
249*
250 ELSE
251*
252* Row and column scaling
253*
254 ioffa = (jja-1)*lda
255 DO 60 j = jja, jja+nq-1
256 cj = c( j )
257 DO 50 i = iia, iia+mp-1
258 a( ioffa + i ) = cj*r( i )*a( ioffa + i )
259 50 CONTINUE
260 ioffa = ioffa + lda
261 60 CONTINUE
262 equed = 'B'
263*
264 END IF
265*
266 RETURN
267*
268* End of PSLAQGE
269*
270 END
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pslaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
Definition pslaqge.f:3