SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
psormlq.f
Go to the documentation of this file.
1 SUBROUTINE psormlq( SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU,
2 $ C, IC, JC, DESCC, WORK, LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER SIDE, TRANS
11 INTEGER IA, IC, INFO, JA, JC, K, LWORK, M, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * ), DESCC( * )
15 REAL A( * ), C( * ), TAU( * ), WORK( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PSORMLQ overwrites the general real M-by-N distributed matrix
22* sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24* SIDE = 'L' SIDE = 'R'
25* TRANS = 'N': Q * sub( C ) sub( C ) * Q
26* TRANS = 'T': Q**T * sub( C ) sub( C ) * Q**T
27*
28* where Q is a real orthogonal distributed matrix defined as the
29* product of K elementary reflectors
30*
31* Q = H(k) . . . H(2) H(1)
32*
33* as returned by PSGELQF. Q is of order M if SIDE = 'L' and of order N
34* if SIDE = 'R'.
35*
36* Notes
37* =====
38*
39* Each global data object is described by an associated description
40* vector. This vector stores the information required to establish
41* the mapping between an object element and its corresponding process
42* and memory location.
43*
44* Let A be a generic term for any 2D block cyclicly distributed array.
45* Such a global array has an associated description vector DESCA.
46* In the following comments, the character _ should be read as
47* "of the global array".
48*
49* NOTATION STORED IN EXPLANATION
50* --------------- -------------- --------------------------------------
51* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
52* DTYPE_A = 1.
53* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
54* the BLACS process grid A is distribu-
55* ted over. The context itself is glo-
56* bal, but the handle (the integer
57* value) may vary.
58* M_A (global) DESCA( M_ ) The number of rows in the global
59* array A.
60* N_A (global) DESCA( N_ ) The number of columns in the global
61* array A.
62* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
63* the rows of the array.
64* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
65* the columns of the array.
66* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
67* row of the array A is distributed.
68* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
69* first column of the array A is
70* distributed.
71* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
72* array. LLD_A >= MAX(1,LOCr(M_A)).
73*
74* Let K be the number of rows or columns of a distributed matrix,
75* and assume that its process grid has dimension p x q.
76* LOCr( K ) denotes the number of elements of K that a process
77* would receive if K were distributed over the p processes of its
78* process column.
79* Similarly, LOCc( K ) denotes the number of elements of K that a
80* process would receive if K were distributed over the q processes of
81* its process row.
82* The values of LOCr() and LOCc() may be determined via a call to the
83* ScaLAPACK tool function, NUMROC:
84* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
85* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
86* An upper bound for these quantities may be computed by:
87* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
88* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
89*
90* Arguments
91* =========
92*
93* SIDE (global input) CHARACTER
94* = 'L': apply Q or Q**T from the Left;
95* = 'R': apply Q or Q**T from the Right.
96*
97* TRANS (global input) CHARACTER
98* = 'N': No transpose, apply Q;
99* = 'T': Transpose, apply Q**T.
100*
101* M (global input) INTEGER
102* The number of rows to be operated on i.e the number of rows
103* of the distributed submatrix sub( C ). M >= 0.
104*
105* N (global input) INTEGER
106* The number of columns to be operated on i.e the number of
107* columns of the distributed submatrix sub( C ). N >= 0.
108*
109* K (global input) INTEGER
110* The number of elementary reflectors whose product defines the
111* matrix Q. If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
112* N >= K >= 0.
113*
114* A (local input) REAL pointer into the local memory
115* to an array of dimension (LLD_A,LOCc(JA+M-1)) if SIDE='L',
116* and (LLD_A,LOCc(JA+N-1)) if SIDE='R', where
117* LLD_A >= max(1,LOCr(IA+K-1)); On entry, the i-th row must
118* contain the vector which defines the elementary reflector
119* H(i), IA <= i <= IA+K-1, as returned by PSGELQF in the
120* K rows of its distributed matrix argument A(IA:IA+K-1,JA:*).
121* A(IA:IA+K-1,JA:*) is modified by the routine but restored on
122* exit.
123*
124* IA (global input) INTEGER
125* The row index in the global array A indicating the first
126* row of sub( A ).
127*
128* JA (global input) INTEGER
129* The column index in the global array A indicating the
130* first column of sub( A ).
131*
132* DESCA (global and local input) INTEGER array of dimension DLEN_.
133* The array descriptor for the distributed matrix A.
134*
135* TAU (local input) REAL, array, dimension LOCc(IA+K-1).
136* This array contains the scalar factors TAU(i) of the
137* elementary reflectors H(i) as returned by PSGELQF.
138* TAU is tied to the distributed matrix A.
139*
140* C (local input/local output) REAL pointer into the
141* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
142* On entry, the local pieces of the distributed matrix sub(C).
143* On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
144* or sub( C )*Q' or sub( C )*Q.
145*
146* IC (global input) INTEGER
147* The row index in the global array C indicating the first
148* row of sub( C ).
149*
150* JC (global input) INTEGER
151* The column index in the global array C indicating the
152* first column of sub( C ).
153*
154* DESCC (global and local input) INTEGER array of dimension DLEN_.
155* The array descriptor for the distributed matrix C.
156*
157* WORK (local workspace/local output) REAL array,
158* dimension (LWORK)
159* On exit, WORK(1) returns the minimal and optimal LWORK.
160*
161* LWORK (local or global input) INTEGER
162* The dimension of the array WORK.
163* LWORK is local input and must be at least
164* if SIDE = 'L',
165* LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 +
166* NUMROC( NUMROC( M+IROFFC, MB_A, 0, 0, NPROW ),
167* MB_A, 0, 0, LCMP ), NqC0 ) )*MB_A ) +
168* MB_A * MB_A
169* else if SIDE = 'R',
170* LWORK >= MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) +
171* MB_A * MB_A
172* end if
173*
174* where LCMP = LCM / NPROW with LCM = ICLM( NPROW, NPCOL ),
175*
176* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
177* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
178* MqA0 = NUMROC( M+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
179*
180* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
181* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
182* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
183* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
184* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
185*
186* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
187* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
188* the subroutine BLACS_GRIDINFO.
189*
190* If LWORK = -1, then LWORK is global input and a workspace
191* query is assumed; the routine only calculates the minimum
192* and optimal size for all work arrays. Each of these
193* values is returned in the first entry of the corresponding
194* work array, and no error message is issued by PXERBLA.
195*
196*
197* INFO (global output) INTEGER
198* = 0: successful exit
199* < 0: If the i-th argument is an array and the j-entry had
200* an illegal value, then INFO = -(i*100+j), if the i-th
201* argument is a scalar and had an illegal value, then
202* INFO = -i.
203*
204* Alignment requirements
205* ======================
206*
207* The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
208* must verify some alignment properties, namely the following
209* expressions should be true:
210*
211* If SIDE = 'L',
212* ( NB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC )
213* If SIDE = 'R',
214* ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )
215*
216* =====================================================================
217*
218* .. Parameters ..
219 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
220 $ lld_, mb_, m_, nb_, n_, rsrc_
221 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
222 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
223 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
224* ..
225* .. Local Scalars ..
226 LOGICAL LEFT, LQUERY, NOTRAN
227 CHARACTER COLBTOP, ROWBTOP, TRANST
228 INTEGER I, I1, I2, I3, IACOL, IB, ICC, ICCOL, ICOFFA,
229 $ icoffc, icrow, ictxt, iinfo, ipw, iroffc, jcc,
230 $ lcm, lcmp, lwmin, mi, mpc0, mqa0, mycol, myrow,
231 $ ni, npcol, nprow, nq, nqc0
232* ..
233* .. Local Arrays ..
234 INTEGER IDUM1( 4 ), IDUM2( 4 )
235* ..
236* .. External Subroutines ..
237 EXTERNAL blacs_gridinfo, chk1mat, pchk2mat, pslarfb,
238 $ pslarft, psorml2, pb_topget, pb_topset, pxerbla
239* ..
240* .. External Functions ..
241 LOGICAL LSAME
242 INTEGER ICEIL, ILCM, INDXG2P, NUMROC
243 EXTERNAL iceil, ilcm, indxg2p, lsame, numroc
244* ..
245* .. Intrinsic Functions ..
246 INTRINSIC ichar, max, min, mod, real
247* ..
248* .. Executable Statements ..
249*
250* Get grid parameters
251*
252 ictxt = desca( ctxt_ )
253 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
254*
255* Test the input parameters
256*
257 info = 0
258 IF( nprow.EQ.-1 ) THEN
259 info = -(900+ctxt_)
260 ELSE
261 left = lsame( side, 'L' )
262 notran = lsame( trans, 'N' )
263*
264* NQ is the order of Q
265*
266 IF( left ) THEN
267 nq = m
268 CALL chk1mat( k, 5, m, 3, ia, ja, desca, 9, info )
269 ELSE
270 nq = n
271 CALL chk1mat( k, 5, n, 4, ia, ja, desca, 9, info )
272 END IF
273 CALL chk1mat( m, 3, n, 4, ic, jc, descc, 14, info )
274 IF( info.EQ.0 ) THEN
275 icoffa = mod( ja-1, desca( nb_ ) )
276 iroffc = mod( ic-1, descc( mb_ ) )
277 icoffc = mod( jc-1, descc( nb_ ) )
278 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
279 $ npcol )
280 icrow = indxg2p( ic, descc( mb_ ), myrow, descc( rsrc_ ),
281 $ nprow )
282 iccol = indxg2p( jc, descc( nb_ ), mycol, descc( csrc_ ),
283 $ npcol )
284 mpc0 = numroc( m+iroffc, descc( mb_ ), myrow, icrow, nprow )
285 nqc0 = numroc( n+icoffc, descc( nb_ ), mycol, iccol, npcol )
286*
287 IF( left ) THEN
288 mqa0 = numroc( m+icoffa, desca( nb_ ), mycol, iacol,
289 $ npcol )
290 lcm = ilcm( nprow, npcol )
291 lcmp = lcm / nprow
292 lwmin = max( ( desca( mb_ ) * ( desca( mb_ ) - 1 ) )
293 $ / 2, ( mpc0 + max( mqa0 + numroc( numroc(
294 $ m+iroffc, desca( mb_ ), 0, 0, nprow ),
295 $ desca( mb_ ), 0, 0, lcmp ), nqc0 ) ) *
296 $ desca( mb_ ) ) + desca( mb_ ) * desca( mb_ )
297 ELSE
298 lwmin = max( ( desca( mb_ ) * ( desca( mb_ ) - 1 ) ) / 2,
299 $ ( mpc0 + nqc0 ) * desca( mb_ ) ) +
300 $ desca( mb_ ) * desca( mb_ )
301 END IF
302*
303 work( 1 ) = real( lwmin )
304 lquery = ( lwork.EQ.-1 )
305 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
306 info = -1
307 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
308 info = -2
309 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
310 info = -5
311 ELSE IF( left .AND. desca( nb_ ).NE.descc( mb_ ) ) THEN
312 info = -(900+nb_)
313 ELSE IF( left .AND. icoffa.NE.iroffc ) THEN
314 info = -12
315 ELSE IF( .NOT.left .AND. icoffa.NE.icoffc ) THEN
316 info = -13
317 ELSE IF( .NOT.left .AND. iacol.NE.iccol ) THEN
318 info = -13
319 ELSE IF( .NOT.left .AND. desca( nb_ ).NE.descc( nb_ ) ) THEN
320 info = -(1400+nb_)
321 ELSE IF( ictxt.NE.descc( ctxt_ ) ) THEN
322 info = -(1400+ctxt_)
323 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
324 info = -16
325 END IF
326 END IF
327 IF( left ) THEN
328 idum1( 1 ) = ichar( 'L' )
329 ELSE
330 idum1( 1 ) = ichar( 'R' )
331 END IF
332 idum2( 1 ) = 1
333 IF( notran ) THEN
334 idum1( 2 ) = ichar( 'N' )
335 ELSE
336 idum1( 2 ) = ichar( 'T' )
337 END IF
338 idum2( 2 ) = 2
339 idum1( 3 ) = k
340 idum2( 3 ) = 5
341 IF( lwork.EQ.-1 ) THEN
342 idum1( 4 ) = -1
343 ELSE
344 idum1( 4 ) = 1
345 END IF
346 idum2( 4 ) = 16
347 IF( left ) THEN
348 CALL pchk2mat( k, 5, m, 3, ia, ja, desca, 9, m, 3, n, 4, ic,
349 $ jc, descc, 14, 4, idum1, idum2, info )
350 ELSE
351 CALL pchk2mat( k, 5, n, 4, ia, ja, desca, 9, m, 3, n, 4, ic,
352 $ jc, descc, 14, 4, idum1, idum2, info )
353 END IF
354 END IF
355*
356 IF( info.NE.0 ) THEN
357 CALL pxerbla( ictxt, 'PSORMLQ', -info )
358 RETURN
359 ELSE IF( lquery ) THEN
360 RETURN
361 END IF
362*
363* Quick return if possible
364*
365 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
366 $ RETURN
367*
368 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
369 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
370*
371 IF( ( left .AND. notran ) .OR.
372 $ ( .NOT.left .AND. .NOT.notran ) ) THEN
373 i1 = min( iceil( ia, desca( mb_ ) ) * desca( mb_ ), ia+k-1 )
374 $ + 1
375 i2 = ia + k - 1
376 i3 = desca( mb_ )
377 ELSE
378 i1 = max( ( (ia+k-2) / desca( mb_ ) ) * desca( mb_ ) + 1, ia )
379 i2 = min( iceil( ia, desca( mb_ ) ) * desca( mb_ ), ia+k-1 )
380 $ + 1
381 i3 = -desca( mb_ )
382 END IF
383*
384 IF( left ) THEN
385 ni = n
386 jcc = jc
387 ELSE
388 mi = m
389 icc = ic
390 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
391 IF( notran ) THEN
392 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'D-ring' )
393 ELSE
394 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'I-ring' )
395 END IF
396 END IF
397*
398 IF( notran ) THEN
399 transt = 'T'
400 ELSE
401 transt = 'N'
402 END IF
403*
404 IF( ( left .AND. notran ) .OR. ( .NOT.left .AND. .NOT.notran ) )
405 $ CALL psorml2( side, trans, m, n, i1-ia, a, ia, ja, desca, tau,
406 $ c, ic, jc, descc, work, lwork, iinfo )
407*
408 ipw = desca( mb_ ) * desca( mb_ ) + 1
409 DO 10 i = i1, i2, i3
410 ib = min( desca( mb_ ), k-i+ia )
411*
412* Form the triangular factor of the block reflector
413* H = H(i) H(i+1) . . . H(i+ib-1)
414*
415 CALL pslarft( 'Forward', 'Rowwise', nq-i+ia, ib, a, i, ja+i-ia,
416 $ desca, tau, work, work( ipw ) )
417 IF( left ) THEN
418*
419* H or H' is applied to C(ic+i-ia:ic+m-1,jc:jc+n-1)
420*
421 mi = m - i + ia
422 icc = ic + i - ia
423 ELSE
424*
425* H or H' is applied to C(ic:ic+m-1,jc+i-ia:jc+n-1)
426*
427 ni = n - i + ia
428 jcc = jc + i - ia
429 END IF
430*
431* Apply H or H'
432*
433 CALL pslarfb( side, transt, 'Forward', 'Rowwise', mi, ni, ib,
434 $ a, i, ja+i-ia, desca, work, c, icc, jcc, descc,
435 $ work( ipw ) )
436 10 CONTINUE
437*
438 IF( ( left .AND. .NOT.notran ) .OR. ( .NOT.left .AND. notran ) )
439 $ CALL psorml2( side, trans, m, n, i2-ia, a, ia, ja, desca, tau,
440 $ c, ic, jc, descc, work, lwork, iinfo )
441*
442 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
443 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
444*
445 work( 1 ) = real( lwmin )
446*
447 RETURN
448*
449* End of PSORMLQ
450*
451 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk2mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, mb, mbpos0, nb, nbpos0, ib, jb, descb, descbpos0, nextra, ex, expos, info)
Definition pchkxmat.f:175
subroutine pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pslarfb.f:3
subroutine pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pslarft.f:3
subroutine psorml2(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
Definition psorml2.f:3
subroutine psormlq(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
Definition psormlq.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2