SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdsytrd.f
Go to the documentation of this file.
1 SUBROUTINE pdsytrd( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
2 $ LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER UPLO
11 INTEGER IA, INFO, JA, LWORK, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * )
15 DOUBLE PRECISION A( * ), D( * ), E( * ), TAU( * ), WORK( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PDSYTRD reduces a real symmetric matrix sub( A ) to symmetric
22* tridiagonal form T by an orthogonal similarity transformation:
23* Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
24*
25* Notes
26* =====
27*
28* Each global data object is described by an associated description
29* vector. This vector stores the information required to establish
30* the mapping between an object element and its corresponding process
31* and memory location.
32*
33* Let A be a generic term for any 2D block cyclicly distributed array.
34* Such a global array has an associated description vector DESCA.
35* In the following comments, the character _ should be read as
36* "of the global array".
37*
38* NOTATION STORED IN EXPLANATION
39* --------------- -------------- --------------------------------------
40* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
41* DTYPE_A = 1.
42* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
43* the BLACS process grid A is distribu-
44* ted over. The context itself is glo-
45* bal, but the handle (the integer
46* value) may vary.
47* M_A (global) DESCA( M_ ) The number of rows in the global
48* array A.
49* N_A (global) DESCA( N_ ) The number of columns in the global
50* array A.
51* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
52* the rows of the array.
53* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
54* the columns of the array.
55* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
56* row of the array A is distributed.
57* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
58* first column of the array A is
59* distributed.
60* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
61* array. LLD_A >= MAX(1,LOCr(M_A)).
62*
63* Let K be the number of rows or columns of a distributed matrix,
64* and assume that its process grid has dimension p x q.
65* LOCr( K ) denotes the number of elements of K that a process
66* would receive if K were distributed over the p processes of its
67* process column.
68* Similarly, LOCc( K ) denotes the number of elements of K that a
69* process would receive if K were distributed over the q processes of
70* its process row.
71* The values of LOCr() and LOCc() may be determined via a call to the
72* ScaLAPACK tool function, NUMROC:
73* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
74* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
75* An upper bound for these quantities may be computed by:
76* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
77* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
78*
79* Arguments
80* =========
81*
82* UPLO (global input) CHARACTER
83* Specifies whether the upper or lower triangular part of the
84* symmetric matrix sub( A ) is stored:
85* = 'U': Upper triangular
86* = 'L': Lower triangular
87*
88* N (global input) INTEGER
89* The number of rows and columns to be operated on, i.e. the
90* order of the distributed submatrix sub( A ). N >= 0.
91*
92* A (local input/local output) DOUBLE PRECISION pointer into the
93* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
94* On entry, this array contains the local pieces of the
95* symmetric distributed matrix sub( A ). If UPLO = 'U', the
96* leading N-by-N upper triangular part of sub( A ) contains
97* the upper triangular part of the matrix, and its strictly
98* lower triangular part is not referenced. If UPLO = 'L', the
99* leading N-by-N lower triangular part of sub( A ) contains the
100* lower triangular part of the matrix, and its strictly upper
101* triangular part is not referenced. On exit, if UPLO = 'U',
102* the diagonal and first superdiagonal of sub( A ) are over-
103* written by the corresponding elements of the tridiagonal
104* matrix T, and the elements above the first superdiagonal,
105* with the array TAU, represent the orthogonal matrix Q as a
106* product of elementary reflectors; if UPLO = 'L', the diagonal
107* and first subdiagonal of sub( A ) are overwritten by the
108* corresponding elements of the tridiagonal matrix T, and the
109* elements below the first subdiagonal, with the array TAU,
110* represent the orthogonal matrix Q as a product of elementary
111* reflectors. See Further Details.
112*
113* IA (global input) INTEGER
114* The row index in the global array A indicating the first
115* row of sub( A ).
116*
117* JA (global input) INTEGER
118* The column index in the global array A indicating the
119* first column of sub( A ).
120*
121* DESCA (global and local input) INTEGER array of dimension DLEN_.
122* The array descriptor for the distributed matrix A.
123*
124* D (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
125* The diagonal elements of the tridiagonal matrix T:
126* D(i) = A(i,i). D is tied to the distributed matrix A.
127*
128* E (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
129* if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
130* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
131* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
132* distributed matrix A.
133*
134* TAU (local output) DOUBLE PRECISION array, dimension
135* LOCc(JA+N-1). This array contains the scalar factors TAU of
136* the elementary reflectors. TAU is tied to the distributed
137* matrix A.
138*
139* WORK (local workspace/local output) DOUBLE PRECISION array,
140* dimension (LWORK)
141* On exit, WORK( 1 ) returns the minimal and optimal LWORK.
142*
143* LWORK (local or global input) INTEGER
144* The dimension of the array WORK.
145* LWORK is local input and must be at least
146* LWORK >= MAX( NB * ( NP +1 ), 3 * NB )
147*
148* where NB = MB_A = NB_A,
149* NP = NUMROC( N, NB, MYROW, IAROW, NPROW ),
150* IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ).
151*
152* INDXG2P and NUMROC are ScaLAPACK tool functions;
153* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
154* the subroutine BLACS_GRIDINFO.
155*
156* If LWORK = -1, then LWORK is global input and a workspace
157* query is assumed; the routine only calculates the minimum
158* and optimal size for all work arrays. Each of these
159* values is returned in the first entry of the corresponding
160* work array, and no error message is issued by PXERBLA.
161*
162* INFO (global output) INTEGER
163* = 0: successful exit
164* < 0: If the i-th argument is an array and the j-entry had
165* an illegal value, then INFO = -(i*100+j), if the i-th
166* argument is a scalar and had an illegal value, then
167* INFO = -i.
168*
169* Further Details
170* ===============
171*
172* If UPLO = 'U', the matrix Q is represented as a product of elementary
173* reflectors
174*
175* Q = H(n-1) . . . H(2) H(1).
176*
177* Each H(i) has the form
178*
179* H(i) = I - tau * v * v'
180*
181* where tau is a real scalar, and v is a real vector with
182* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
183* A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
184*
185* If UPLO = 'L', the matrix Q is represented as a product of elementary
186* reflectors
187*
188* Q = H(1) H(2) . . . H(n-1).
189*
190* Each H(i) has the form
191*
192* H(i) = I - tau * v * v'
193*
194* where tau is a real scalar, and v is a real vector with
195* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
196* A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
197*
198* The contents of sub( A ) on exit are illustrated by the following
199* examples with n = 5:
200*
201* if UPLO = 'U': if UPLO = 'L':
202*
203* ( d e v2 v3 v4 ) ( d )
204* ( d e v3 v4 ) ( e d )
205* ( d e v4 ) ( v1 e d )
206* ( d e ) ( v1 v2 e d )
207* ( d ) ( v1 v2 v3 e d )
208*
209* where d and e denote diagonal and off-diagonal elements of T, and vi
210* denotes an element of the vector defining H(i).
211*
212* Alignment requirements
213* ======================
214*
215* The distributed submatrix sub( A ) must verify some alignment proper-
216* ties, namely the following expression should be true:
217* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA .AND. IROFFA.EQ.0 ) with
218* IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
219*
220* =====================================================================
221*
222* .. Parameters ..
223 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
224 $ lld_, mb_, m_, nb_, n_, rsrc_
225 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
226 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
227 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
228 DOUBLE PRECISION ONE
229 parameter( one = 1.0d+0 )
230* ..
231* .. Local Scalars ..
232 LOGICAL LQUERY, UPPER
233 CHARACTER COLCTOP, ROWCTOP
234 INTEGER I, IACOL, IAROW, ICOFFA, ICTXT, IINFO, IPW,
235 $ iroffa, j, jb, jx, k, kk, lwmin, mycol, myrow,
236 $ nb, np, npcol, nprow, nq
237* ..
238* .. Local Arrays ..
239 INTEGER DESCW( DLEN_ ), IDUM1( 2 ), IDUM2( 2 )
240* ..
241* .. External Subroutines ..
242 EXTERNAL blacs_gridinfo, chk1mat, descset, pchk1mat,
243 $ pdlatrd, pdsyr2k, pdsytd2, pb_topget,
244 $ pb_topset, pxerbla
245* ..
246* .. External Functions ..
247 LOGICAL LSAME
248 INTEGER INDXG2L, INDXG2P, NUMROC
249 EXTERNAL lsame, indxg2l, indxg2p, numroc
250* ..
251* .. Intrinsic Functions ..
252 INTRINSIC dble, ichar, max, min, mod
253* ..
254* .. Executable Statements ..
255*
256* Get grid parameters
257*
258 ictxt = desca( ctxt_ )
259 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
260*
261* Test the input parameters
262*
263 info = 0
264 IF( nprow.EQ.-1 ) THEN
265 info = -(600+ctxt_)
266 ELSE
267 CALL chk1mat( n, 2, n, 2, ia, ja, desca, 6, info )
268 upper = lsame( uplo, 'U' )
269 IF( info.EQ.0 ) THEN
270 nb = desca( nb_ )
271 iroffa = mod( ia-1, desca( mb_ ) )
272 icoffa = mod( ja-1, desca( nb_ ) )
273 iarow = indxg2p( ia, nb, myrow, desca( rsrc_ ), nprow )
274 iacol = indxg2p( ja, nb, mycol, desca( csrc_ ), npcol )
275 np = numroc( n, nb, myrow, iarow, nprow )
276 nq = max( 1, numroc( n+ja-1, nb, mycol, desca( csrc_ ),
277 $ npcol ) )
278 lwmin = max( (np+1)*nb, 3*nb )
279*
280 work( 1 ) = dble( lwmin )
281 lquery = ( lwork.EQ.-1 )
282 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
283 info = -1
284 ELSE IF( iroffa.NE.icoffa .OR. icoffa.NE.0 ) THEN
285 info = -5
286 ELSE IF( desca( mb_ ).NE.desca( nb_ ) ) THEN
287 info = -(600+nb_)
288 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
289 info = -11
290 END IF
291 END IF
292 IF( upper ) THEN
293 idum1( 1 ) = ichar( 'U' )
294 ELSE
295 idum1( 1 ) = ichar( 'L' )
296 END IF
297 idum2( 1 ) = 1
298 IF( lwork.EQ.-1 ) THEN
299 idum1( 2 ) = -1
300 ELSE
301 idum1( 2 ) = 1
302 END IF
303 idum2( 2 ) = 11
304 CALL pchk1mat( n, 2, n, 2, ia, ja, desca, 6, 2, idum1, idum2,
305 $ info )
306 END IF
307*
308 IF( info.NE.0 ) THEN
309 CALL pxerbla( ictxt, 'PDSYTRD', -info )
310 RETURN
311 ELSE IF( lquery ) THEN
312 RETURN
313 END IF
314*
315* Quick return if possible
316*
317 IF( n.EQ.0 )
318 $ RETURN
319*
320 CALL pb_topget( ictxt, 'Combine', 'Columnwise', colctop )
321 CALL pb_topget( ictxt, 'Combine', 'Rowwise', rowctop )
322 CALL pb_topset( ictxt, 'Combine', 'Columnwise', '1-tree' )
323 CALL pb_topset( ictxt, 'Combine', 'Rowwise', '1-tree' )
324*
325 ipw = np * nb + 1
326*
327 IF( upper ) THEN
328*
329* Reduce the upper triangle of sub( A ).
330*
331 kk = mod( ja+n-1, nb )
332 IF( kk.EQ.0 )
333 $ kk = nb
334 CALL descset( descw, n, nb, nb, nb, iarow, indxg2p( ja+n-kk,
335 $ nb, mycol, desca( csrc_ ), npcol ), ictxt,
336 $ max( 1, np ) )
337*
338 DO 10 k = n-kk+1, nb+1, -nb
339 jb = min( n-k+1, nb )
340 i = ia + k - 1
341 j = ja + k - 1
342*
343* Reduce columns I:I+NB-1 to tridiagonal form and form
344* the matrix W which is needed to update the unreduced part of
345* the matrix
346*
347 CALL pdlatrd( uplo, k+jb-1, jb, a, ia, ja, desca, d, e, tau,
348 $ work, 1, 1, descw, work( ipw ) )
349*
350* Update the unreduced submatrix A(IA:I-1,JA:J-1), using an
351* update of the form:
352* A(IA:I-1,JA:J-1) := A(IA:I-1,JA:J-1) - V*W' - W*V'
353*
354 CALL pdsyr2k( uplo, 'No transpose', k-1, jb, -one, a, ia, j,
355 $ desca, work, 1, 1, descw, one, a, ia, ja,
356 $ desca )
357*
358* Copy last superdiagonal element back into sub( A )
359*
360 jx = min( indxg2l( j, nb, 0, iacol, npcol ), nq )
361 CALL pdelset( a, i-1, j, desca, e( jx ) )
362*
363 descw( csrc_ ) = mod( descw( csrc_ ) + npcol - 1, npcol )
364*
365 10 CONTINUE
366*
367* Use unblocked code to reduce the last or only block
368*
369 CALL pdsytd2( uplo, min( n, nb ), a, ia, ja, desca, d, e,
370 $ tau, work, lwork, iinfo )
371*
372 ELSE
373*
374* Reduce the lower triangle of sub( A )
375*
376 kk = mod( ja+n-1, nb )
377 IF( kk.EQ.0 )
378 $ kk = nb
379 CALL descset( descw, n, nb, nb, nb, iarow, iacol, ictxt,
380 $ max( 1, np ) )
381*
382 DO 20 k = 1, n-nb, nb
383 i = ia + k - 1
384 j = ja + k - 1
385*
386* Reduce columns I:I+NB-1 to tridiagonal form and form
387* the matrix W which is needed to update the unreduced part
388* of the matrix
389*
390 CALL pdlatrd( uplo, n-k+1, nb, a, i, j, desca, d, e, tau,
391 $ work, k, 1, descw, work( ipw ) )
392*
393* Update the unreduced submatrix A(I+NB:IA+N-1,I+NB:IA+N-1),
394* using an update of the form: A(I+NB:IA+N-1,I+NB:IA+N-1) :=
395* A(I+NB:IA+N-1,I+NB:IA+N-1) - V*W' - W*V'
396*
397 CALL pdsyr2k( uplo, 'No transpose', n-k-nb+1, nb, -one, a,
398 $ i+nb, j, desca, work, k+nb, 1, descw, one, a,
399 $ i+nb, j+nb, desca )
400*
401* Copy last subdiagonal element back into sub( A )
402*
403 jx = min( indxg2l( j+nb-1, nb, 0, iacol, npcol ), nq )
404 CALL pdelset( a, i+nb, j+nb-1, desca, e( jx ) )
405*
406 descw( csrc_ ) = mod( descw( csrc_ ) + 1, npcol )
407*
408 20 CONTINUE
409*
410* Use unblocked code to reduce the last or only block
411*
412 CALL pdsytd2( uplo, kk, a, ia+k-1, ja+k-1, desca, d, e,
413 $ tau, work, lwork, iinfo )
414 END IF
415*
416 CALL pb_topset( ictxt, 'Combine', 'Columnwise', colctop )
417 CALL pb_topset( ictxt, 'Combine', 'Rowwise', rowctop )
418*
419 work( 1 ) = dble( lwmin )
420*
421 RETURN
422*
423* End of PDSYTRD
424*
425 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, nextra, ex, expos, info)
Definition pchkxmat.f:3
subroutine pdelset(a, ia, ja, desca, alpha)
Definition pdelset.f:2
subroutine pdlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
Definition pdlatrd.f:3
subroutine pdsytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pdsytd2.f:3
subroutine pdsytrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pdsytrd.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2