SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
psqrt13.f
Go to the documentation of this file.
1 SUBROUTINE psqrt13( SCALE, M, N, A, IA, JA, DESCA, NORMA, ISEED,
2 $ WORK )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 INTEGER IA, ISEED, JA, M, N, SCALE
11 REAL NORMA
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * )
15 REAL WORK( * )
16 REAL A( * )
17* ..
18*
19* Purpose
20* =======
21*
22* PSQRT13 generates a full-rank matrix that may be scaled to have
23* large or small norm.
24*
25* Notes
26* =====
27*
28* Each global data object is described by an associated description
29* vector. This vector stores the information required to establish
30* the mapping between an object element and its corresponding process
31* and memory location.
32*
33* Let A be a generic term for any 2D block cyclicly distributed array.
34* Such a global array has an associated description vector DESCA.
35* In the following comments, the character _ should be read as
36* "of the global array".
37*
38* NOTATION STORED IN EXPLANATION
39* --------------- -------------- --------------------------------------
40* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
41* DTYPE_A = 1.
42* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
43* the BLACS process grid A is distribu-
44* ted over. The context itself is glo-
45* bal, but the handle (the integer
46* value) may vary.
47* M_A (global) DESCA( M_ ) The number of rows in the global
48* array A.
49* N_A (global) DESCA( N_ ) The number of columns in the global
50* array A.
51* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
52* the rows of the array.
53* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
54* the columns of the array.
55* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
56* row of the array A is distributed.
57* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
58* first column of the array A is
59* distributed.
60* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
61* array. LLD_A >= MAX(1,LOCr(M_A)).
62*
63* Let K be the number of rows or columns of a distributed matrix,
64* and assume that its process grid has dimension p x q.
65* LOCr( K ) denotes the number of elements of K that a process
66* would receive if K were distributed over the p processes of its
67* process column.
68* Similarly, LOCc( K ) denotes the number of elements of K that a
69* process would receive if K were distributed over the q processes of
70* its process row.
71* The values of LOCr() and LOCc() may be determined via a call to the
72* ScaLAPACK tool function, NUMROC:
73* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
74* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
75* An upper bound for these quantities may be computed by:
76* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
77* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
78*
79* Arguments
80* =========
81*
82* SCALE (global input) INTEGER
83* SCALE = 1: normally scaled matrix
84* SCALE = 2: matrix scaled up
85* SCALE = 3: matrix scaled down
86*
87* M (global input) INTEGER
88* The number of rows to be operated on, i.e. the number of rows
89* of the distributed submatrix sub( A ). M >= 0.
90*
91* N (global input) INTEGER
92* The number of columns to be operated on, i.e. the number of
93* columns of the distributed submatrix sub( A ). N >= 0.
94*
95* A (local output) REAL pointer into the local memory
96* to an array of dimension (LLD_A,LOCc(JA+N-1)). This array
97* contains the local pieces of the distributed matrix sub( A ).
98*
99* IA (global input) INTEGER
100* The row index in the global array A indicating the first
101* row of sub( A ).
102*
103* JA (global input) INTEGER
104* The column index in the global array A indicating the
105* first column of sub( A ).
106*
107* DESCA (global and local input) INTEGER array of dimension DLEN_.
108* The array descriptor for the distributed matrix A.
109*
110* NORMA (global output) REAL
111* The one-norm of A.
112*
113* ISEED (global input/global output) INTEGER
114* Seed for random number generator.
115*
116* WORK (local workspace) REAL array, dimension (LWORK)
117* LWORK >= Nq0, where
118*
119* ICOFFA = MOD( JA-1, NB_A ),
120* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ), and
121* Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ).
122*
123* INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
124* MYCOL, NPROW and NPCOL can be determined by calling the
125* subroutine BLACS_GRIDINFO.
126*
127* =====================================================================
128*
129* .. Parameters ..
130 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
131 $ lld_, mb_, m_, nb_, n_, rsrc_
132 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
133 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
134 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
135 REAL ONE
136 parameter( one = 1.0e0 )
137* ..
138* .. Local Scalars ..
139 INTEGER I, IACOL, IAROW, ICOFFA, ICTXT, IIA, INFO,
140 $ iroffa, j, jja, mp, mycol, myrow, npcol,
141 $ nprow, nq
142 REAL AJJ, ASUM, BIGNUM, SMLNUM
143* ..
144* .. External Functions ..
145 INTEGER NUMROC
146 REAL PSLAMCH, PSLANGE
147 EXTERNAL numroc, pslamch, pslange
148* ..
149* .. External Subroutines ..
150 EXTERNAL blacs_gridinfo, infog2l, pslabad, pslascl,
151 $ psmatgen, psasum, pselget, pselset
152* ..
153* .. Intrinsic Functions ..
154 INTRINSIC mod, sign
155* ..
156* .. Executable Statements ..
157*
158 ictxt = desca( ctxt_ )
159 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
160*
161 IF( m.LE.0 .OR. n.LE.0 )
162 $ RETURN
163*
164* generate the matrix
165*
166 iroffa = mod( ia-1, desca( mb_ ) )
167 icoffa = mod( ja-1, desca( nb_ ) )
168 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia,
169 $ jja, iarow, iacol )
170 mp = numroc( m+iroffa, desca( mb_ ), myrow, iarow, nprow )
171 nq = numroc( n+icoffa, desca( nb_ ), mycol, iacol, npcol )
172 IF( myrow.EQ.iarow )
173 $ mp = mp - iroffa
174 IF( mycol.EQ.iacol )
175 $ nq = nq - icoffa
176*
177 CALL psmatgen( ictxt, 'N', 'N', desca( m_ ), desca( n_ ),
178 $ desca( mb_ ), desca( nb_ ), a, desca( lld_ ),
179 $ desca( rsrc_ ), desca( csrc_ ), iseed, iia-1, mp,
180 $ jja-1, nq, myrow, mycol, nprow, npcol )
181*
182 DO 10 j = ja, ja+n-1
183 i = ia + j - ja
184 IF( i.LE.ia+m-1 ) THEN
185 CALL psasum( m, asum, a, ia, j, desca, 1 )
186 CALL pselget( 'Column', ' ', ajj, a, i, j, desca )
187 ajj = ajj + sign( asum, ajj )
188 CALL pselset( a, i, j, desca, ajj )
189 END IF
190 10 CONTINUE
191*
192* scaled versions
193*
194 IF( scale.NE.1 ) THEN
195*
196 norma = pslange( 'M', m, n, a, ia, ja, desca, work )
197 smlnum = pslamch( ictxt, 'Safe minimum' )
198 bignum = one / smlnum
199 CALL pslabad( ictxt, smlnum, bignum )
200 smlnum = smlnum / pslamch( ictxt, 'Epsilon' )
201 bignum = one / smlnum
202*
203 IF( scale.EQ.2 ) THEN
204*
205* matrix scaled up
206*
207 CALL pslascl( 'General', norma, bignum, m, n, a, ia,
208 $ ja, desca, info )
209*
210 ELSE IF( scale.EQ.3 ) THEN
211*
212* matrix scaled down
213*
214 CALL pslascl( 'General', norma, smlnum, m, n, a, ia,
215 $ ja, desca, info )
216*
217 END IF
218*
219 END IF
220*
221 norma = pslange( 'One-norm', m, n, a, ia, ja, desca, work )
222*
223 RETURN
224*
225* End of PSQRT13
226*
227 END
subroutine psmatgen(ictxt, aform, diag, m, n, mb, nb, a, lda, iarow, iacol, iseed, iroff, irnum, icoff, icnum, myrow, mycol, nprow, npcol)
Definition psmatgen.f:4
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pselget(scope, top, alpha, a, ia, ja, desca)
Definition pselget.f:2
subroutine pselset(a, ia, ja, desca, alpha)
Definition pselset.f:2
subroutine pslabad(ictxt, small, large)
Definition pslabad.f:2
subroutine pslascl(type, cfrom, cto, m, n, a, ia, ja, desca, info)
Definition pslascl.f:3
subroutine psqrt13(scale, m, n, a, ia, ja, desca, norma, iseed, work)
Definition psqrt13.f:3