SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pssygs2.f
Go to the documentation of this file.
1*
2*
3 SUBROUTINE pssygs2( IBTYPE, UPLO, N, A, IA, JA, DESCA, B, IB, JB,
4 $ DESCB, INFO )
5*
6* -- ScaLAPACK routine (version 1.7) --
7* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
8* and University of California, Berkeley.
9* May 1, 1997
10*
11* .. Scalar Arguments ..
12 CHARACTER UPLO
13 INTEGER IA, IB, IBTYPE, INFO, JA, JB, N
14* ..
15* .. Array Arguments ..
16 INTEGER DESCA( * ), DESCB( * )
17 REAL A( * ), B( * )
18* ..
19*
20* Purpose
21* =======
22*
23* PSSYGS2 reduces a real symmetric-definite generalized eigenproblem
24* to standard form.
25*
26* In the following sub( A ) denotes A( IA:IA+N-1, JA:JA+N-1 ) and
27* sub( B ) denotes B( IB:IB+N-1, JB:JB+N-1 ).
28*
29* If IBTYPE = 1, the problem is sub( A )*x = lambda*sub( B )*x,
30* and sub( A ) is overwritten by inv(U**T)*sub( A )*inv(U) or
31* inv(L)*sub( A )*inv(L**T)
32*
33* If IBTYPE = 2 or 3, the problem is sub( A )*sub( B )*x = lambda*x or
34* sub( B )*sub( A )*x = lambda*x, and sub( A ) is overwritten by
35* U*sub( A )*U**T or L**T*sub( A )*L.
36*
37* sub( B ) must have been previously factorized as U**T*U or L*L**T by
38* PSPOTRF.
39*
40* Notes
41* =====
42*
43* Each global data object is described by an associated description
44* vector. This vector stores the information required to establish
45* the mapping between an object element and its corresponding process
46* and memory location.
47*
48* Let A be a generic term for any 2D block cyclicly distributed array.
49* Such a global array has an associated description vector DESCA.
50* In the following comments, the character _ should be read as
51* "of the global array".
52*
53* NOTATION STORED IN EXPLANATION
54* --------------- -------------- --------------------------------------
55* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
56* DTYPE_A = 1.
57* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
58* the BLACS process grid A is distribu-
59* ted over. The context itself is glo-
60* bal, but the handle (the integer
61* value) may vary.
62* M_A (global) DESCA( M_ ) The number of rows in the global
63* array A.
64* N_A (global) DESCA( N_ ) The number of columns in the global
65* array A.
66* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
67* the rows of the array.
68* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
69* the columns of the array.
70* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
71* row of the array A is distributed.
72* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
73* first column of the array A is
74* distributed.
75* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
76* array. LLD_A >= MAX(1,LOCr(M_A)).
77*
78* Let K be the number of rows or columns of a distributed matrix,
79* and assume that its process grid has dimension p x q.
80* LOCr( K ) denotes the number of elements of K that a process
81* would receive if K were distributed over the p processes of its
82* process column.
83* Similarly, LOCc( K ) denotes the number of elements of K that a
84* process would receive if K were distributed over the q processes of
85* its process row.
86* The values of LOCr() and LOCc() may be determined via a call to the
87* ScaLAPACK tool function, NUMROC:
88* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
89* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
90* An upper bound for these quantities may be computed by:
91* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
92* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
93*
94* Arguments
95* =========
96*
97* IBTYPE (global input) INTEGER
98* = 1: compute inv(U**T)*sub( A )*inv(U) or
99* inv(L)*sub( A )*inv(L**T);
100* = 2 or 3: compute U*sub( A )*U**T or L**T*sub( A )*L.
101*
102* UPLO (global input) CHARACTER
103* = 'U': Upper triangle of sub( A ) is stored and sub( B ) is
104* factored as U**T*U;
105* = 'L': Lower triangle of sub( A ) is stored and sub( B ) is
106* factored as L*L**T.
107*
108* N (global input) INTEGER
109* The order of the matrices sub( A ) and sub( B ). N >= 0.
110*
111* A (local input/local output) REAL pointer into the
112* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
113* On entry, this array contains the local pieces of the
114* N-by-N symmetric distributed matrix sub( A ). If UPLO = 'U',
115* the leading N-by-N upper triangular part of sub( A ) contains
116* the upper triangular part of the matrix, and its strictly
117* lower triangular part is not referenced. If UPLO = 'L', the
118* leading N-by-N lower triangular part of sub( A ) contains
119* the lower triangular part of the matrix, and its strictly
120* upper triangular part is not referenced.
121*
122* On exit, if INFO = 0, the transformed matrix, stored in the
123* same format as sub( A ).
124*
125* IA (global input) INTEGER
126* A's global row index, which points to the beginning of the
127* submatrix which is to be operated on.
128*
129* JA (global input) INTEGER
130* A's global column index, which points to the beginning of
131* the submatrix which is to be operated on.
132*
133* DESCA (global and local input) INTEGER array of dimension DLEN_.
134* The array descriptor for the distributed matrix A.
135*
136* B (local input) REAL pointer into the local memory
137* to an array of dimension (LLD_B, LOCc(JB+N-1)). On entry,
138* this array contains the local pieces of the triangular factor
139* from the Cholesky factorization of sub( B ), as returned by
140* PSPOTRF.
141*
142* IB (global input) INTEGER
143* B's global row index, which points to the beginning of the
144* submatrix which is to be operated on.
145*
146* JB (global input) INTEGER
147* B's global column index, which points to the beginning of
148* the submatrix which is to be operated on.
149*
150* DESCB (global and local input) INTEGER array of dimension DLEN_.
151* The array descriptor for the distributed matrix B.
152*
153* INFO (global output) INTEGER
154* = 0: successful exit
155* < 0: If the i-th argument is an array and the j-entry had
156* an illegal value, then INFO = -(i*100+j), if the i-th
157* argument is a scalar and had an illegal value, then
158* INFO = -i.
159*
160* =====================================================================
161*
162* .. Parameters ..
163 INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
164 $ mb_, nb_, rsrc_, csrc_, lld_
165 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
166 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
167 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
168 REAL ONE, HALF
169 parameter( one = 1.0e+0, half = 0.5e+0 )
170* ..
171* .. Local Scalars ..
172 LOGICAL UPPER
173 INTEGER IACOL, IAROW, IBCOL, IBROW, ICOFFA, ICOFFB,
174 $ ictxt, iia, iib, ioffa, ioffb, iroffa, iroffb,
175 $ jja, jjb, k, lda, ldb, mycol, myrow, npcol,
176 $ nprow
177 REAL AKK, BKK, CT
178* ..
179* .. External Subroutines ..
180 EXTERNAL blacs_exit, blacs_gridinfo, chk1mat, infog2l,
181 $ pxerbla, saxpy, sscal, ssyr2, strmv, strsv
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC mod
185* ..
186* .. External Functions ..
187 LOGICAL LSAME
188 INTEGER INDXG2P
189 EXTERNAL lsame, indxg2p
190* ..
191* .. Executable Statements ..
192* This is just to keep ftnchek happy
193 IF( block_cyclic_2d*csrc_*ctxt_*dlen_*dtype_*lld_*mb_*m_*nb_*n_*
194 $ rsrc_.LT.0 )RETURN
195*
196* Get grid parameters
197*
198 ictxt = desca( ctxt_ )
199 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
200*
201* Test the input parameters.
202*
203 info = 0
204 IF( nprow.EQ.-1 ) THEN
205 info = -( 700+ctxt_ )
206 ELSE
207 upper = lsame( uplo, 'U' )
208 CALL chk1mat( n, 3, n, 3, ia, ja, desca, 7, info )
209 CALL chk1mat( n, 3, n, 3, ib, jb, descb, 11, info )
210 IF( info.EQ.0 ) THEN
211 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
212 $ nprow )
213 ibrow = indxg2p( ib, descb( mb_ ), myrow, descb( rsrc_ ),
214 $ nprow )
215 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
216 $ npcol )
217 ibcol = indxg2p( jb, descb( nb_ ), mycol, descb( csrc_ ),
218 $ npcol )
219 iroffa = mod( ia-1, desca( mb_ ) )
220 icoffa = mod( ja-1, desca( nb_ ) )
221 iroffb = mod( ib-1, descb( mb_ ) )
222 icoffb = mod( jb-1, descb( nb_ ) )
223 IF( ibtype.LT.1 .OR. ibtype.GT.3 ) THEN
224 info = -1
225 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
226 info = -2
227 ELSE IF( n.LT.0 ) THEN
228 info = -3
229 ELSE IF( n+icoffa.GT.desca( nb_ ) ) THEN
230 info = -3
231 ELSE IF( iroffa.NE.0 ) THEN
232 info = -5
233 ELSE IF( icoffa.NE.0 ) THEN
234 info = -6
235 ELSE IF( desca( mb_ ).NE.desca( nb_ ) ) THEN
236 info = -( 700+nb_ )
237 ELSE IF( iroffb.NE.0 .OR. ibrow.NE.iarow ) THEN
238 info = -9
239 ELSE IF( icoffb.NE.0 .OR. ibcol.NE.iacol ) THEN
240 info = -10
241 ELSE IF( descb( mb_ ).NE.desca( mb_ ) ) THEN
242 info = -( 1100+mb_ )
243 ELSE IF( descb( nb_ ).NE.desca( nb_ ) ) THEN
244 info = -( 1100+nb_ )
245 ELSE IF( ictxt.NE.descb( ctxt_ ) ) THEN
246 info = -( 1100+ctxt_ )
247 END IF
248 END IF
249 END IF
250*
251 IF( info.NE.0 ) THEN
252 CALL pxerbla( ictxt, 'PSSYGS2', -info )
253 CALL blacs_exit( ictxt )
254 RETURN
255 END IF
256*
257* Quick return if possible
258*
259 IF( n.EQ.0 .OR. ( myrow.NE.iarow .OR. mycol.NE.iacol ) )
260 $ RETURN
261*
262* Compute local information
263*
264 lda = desca( lld_ )
265 ldb = descb( lld_ )
266 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
267 $ iarow, iacol )
268 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iib, jjb,
269 $ ibrow, ibcol )
270*
271 IF( ibtype.EQ.1 ) THEN
272*
273 IF( upper ) THEN
274*
275 ioffa = iia + jja*lda
276 ioffb = iib + jjb*ldb
277*
278* Compute inv(U')*sub( A )*inv(U)
279*
280 DO 10 k = 1, n
281*
282* Update the upper triangle of
283* A(ia+k-1:ia+n-a,ia+k-1:ia+n-1)
284*
285 akk = a( ioffa-lda )
286 bkk = b( ioffb-ldb )
287 akk = akk / bkk**2
288 a( ioffa-lda ) = akk
289 IF( k.LT.n ) THEN
290 CALL sscal( n-k, one / bkk, a( ioffa ), lda )
291 ct = -half*akk
292 CALL saxpy( n-k, ct, b( ioffb ), ldb, a( ioffa ),
293 $ lda )
294 CALL ssyr2( uplo, n-k, -one, a( ioffa ), lda,
295 $ b( ioffb ), ldb, a( ioffa+1 ), lda )
296 CALL saxpy( n-k, ct, b( ioffb ), ldb, a( ioffa ),
297 $ lda )
298 CALL strsv( uplo, 'Transpose', 'Non-unit', n-k,
299 $ b( ioffb+1 ), ldb, a( ioffa ), lda )
300 END IF
301*
302* A( IOFFA ) -> A( K, K+1 )
303* B( IOFFB ) -> B( K, K+1 )
304*
305 ioffa = ioffa + lda + 1
306 ioffb = ioffb + ldb + 1
307*
308 10 CONTINUE
309*
310 ELSE
311*
312 ioffa = iia + 1 + ( jja-1 )*lda
313 ioffb = iib + 1 + ( jjb-1 )*ldb
314*
315* Compute inv(L)*sub( A )*inv(L')
316*
317 DO 20 k = 1, n
318*
319* Update the lower triangle of
320* A(ia+k-1:ia+n-a,ia+k-1:ia+n-1)
321*
322 akk = a( ioffa-1 )
323 bkk = b( ioffb-1 )
324 akk = akk / bkk**2
325 a( ioffa-1 ) = akk
326*
327 IF( k.LT.n ) THEN
328 CALL sscal( n-k, one / bkk, a( ioffa ), 1 )
329 ct = -half*akk
330 CALL saxpy( n-k, ct, b( ioffb ), 1, a( ioffa ), 1 )
331 CALL ssyr2( uplo, n-k, -one, a( ioffa ), 1,
332 $ b( ioffb ), 1, a( ioffa+lda ), lda )
333 CALL saxpy( n-k, ct, b( ioffb ), 1, a( ioffa ), 1 )
334 CALL strsv( uplo, 'No transpose', 'Non-unit', n-k,
335 $ b( ioffb+ldb ), ldb, a( ioffa ), 1 )
336 END IF
337*
338* A( IOFFA ) -> A( K+1, K )
339* B( IOFFB ) -> B( K+1, K )
340*
341 ioffa = ioffa + lda + 1
342 ioffb = ioffb + ldb + 1
343*
344 20 CONTINUE
345*
346 END IF
347*
348 ELSE
349*
350 IF( upper ) THEN
351*
352 ioffa = iia + ( jja-1 )*lda
353 ioffb = iib + ( jjb-1 )*ldb
354*
355* Compute U*sub( A )*U'
356*
357 DO 30 k = 1, n
358*
359* Update the upper triangle of A(ia:ia+k-1,ja:ja+k-1)
360*
361 akk = a( ioffa+k-1 )
362 bkk = b( ioffb+k-1 )
363 CALL strmv( uplo, 'No transpose', 'Non-unit', k-1,
364 $ b( iib+( jjb-1 )*ldb ), ldb, a( ioffa ), 1 )
365 ct = half*akk
366 CALL saxpy( k-1, ct, b( ioffb ), 1, a( ioffa ), 1 )
367 CALL ssyr2( uplo, k-1, one, a( ioffa ), 1, b( ioffb ), 1,
368 $ a( iia+( jja-1 )*lda ), lda )
369 CALL saxpy( k-1, ct, b( ioffb ), 1, a( ioffa ), 1 )
370 CALL sscal( k-1, bkk, a( ioffa ), 1 )
371 a( ioffa+k-1 ) = akk*bkk**2
372*
373* A( IOFFA ) -> A( 1, K )
374* B( IOFFB ) -> B( 1, K )
375*
376 ioffa = ioffa + lda
377 ioffb = ioffb + ldb
378*
379 30 CONTINUE
380*
381 ELSE
382*
383 ioffa = iia + ( jja-1 )*lda
384 ioffb = iib + ( jjb-1 )*ldb
385*
386* Compute L'*sub( A )*L
387*
388 DO 40 k = 1, n
389*
390* Update the lower triangle of A(ia:ia+k-1,ja:ja+k-1)
391*
392 akk = a( ioffa+( k-1 )*lda )
393 bkk = b( ioffb+( k-1 )*ldb )
394 CALL strmv( uplo, 'Transpose', 'Non-unit', k-1,
395 $ b( iib+( jjb-1 )*ldb ), ldb, a( ioffa ),
396 $ lda )
397 ct = half*akk
398 CALL saxpy( k-1, ct, b( ioffb ), ldb, a( ioffa ), lda )
399 CALL ssyr2( uplo, k-1, one, a( ioffa ), lda, b( ioffb ),
400 $ ldb, a( iia+( jja-1 )*lda ), lda )
401 CALL saxpy( k-1, ct, b( ioffb ), ldb, a( ioffa ), lda )
402 CALL sscal( k-1, bkk, a( ioffa ), lda )
403 a( ioffa+( k-1 )*lda ) = akk*bkk**2
404*
405* A( IOFFA ) -> A( K, 1 )
406* B( IOFFB ) -> B( K, 1 )
407*
408 ioffa = ioffa + 1
409 ioffb = ioffb + 1
410*
411 40 CONTINUE
412*
413 END IF
414*
415 END IF
416*
417 RETURN
418*
419* End of PSSYGS2
420*
421 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pssygs2(ibtype, uplo, n, a, ia, ja, desca, b, ib, jb, descb, info)
Definition pssygs2.f:5
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2