SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pclaqge.f
Go to the documentation of this file.
1 SUBROUTINE pclaqge( M, N, A, IA, JA, DESCA, R, C, ROWCND, COLCND,
2 $ AMAX, EQUED )
3*
4* -- ScaLAPACK auxiliary routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 CHARACTER EQUED
11 INTEGER IA, JA, M, N
12 REAL AMAX, COLCND, ROWCND
13* ..
14* .. Array Arguments ..
15 INTEGER DESCA( * )
16 REAL C( * ), R( * )
17 COMPLEX A( * )
18* ..
19*
20* Purpose
21* =======
22*
23* PCLAQGE equilibrates a general M-by-N distributed matrix
24* sub( A ) = A(IA:IA+M-1,JA:JA+N-1) using the row and scaling
25* factors in the vectors R and C.
26*
27* Notes
28* =====
29*
30* Each global data object is described by an associated description
31* vector. This vector stores the information required to establish
32* the mapping between an object element and its corresponding process
33* and memory location.
34*
35* Let A be a generic term for any 2D block cyclicly distributed array.
36* Such a global array has an associated description vector DESCA.
37* In the following comments, the character _ should be read as
38* "of the global array".
39*
40* NOTATION STORED IN EXPLANATION
41* --------------- -------------- --------------------------------------
42* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
43* DTYPE_A = 1.
44* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
45* the BLACS process grid A is distribu-
46* ted over. The context itself is glo-
47* bal, but the handle (the integer
48* value) may vary.
49* M_A (global) DESCA( M_ ) The number of rows in the global
50* array A.
51* N_A (global) DESCA( N_ ) The number of columns in the global
52* array A.
53* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
54* the rows of the array.
55* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
56* the columns of the array.
57* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
58* row of the array A is distributed.
59* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
60* first column of the array A is
61* distributed.
62* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
63* array. LLD_A >= MAX(1,LOCr(M_A)).
64*
65* Let K be the number of rows or columns of a distributed matrix,
66* and assume that its process grid has dimension p x q.
67* LOCr( K ) denotes the number of elements of K that a process
68* would receive if K were distributed over the p processes of its
69* process column.
70* Similarly, LOCc( K ) denotes the number of elements of K that a
71* process would receive if K were distributed over the q processes of
72* its process row.
73* The values of LOCr() and LOCc() may be determined via a call to the
74* ScaLAPACK tool function, NUMROC:
75* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
76* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
77* An upper bound for these quantities may be computed by:
78* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
79* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
80*
81* Arguments
82* =========
83*
84* M (global input) INTEGER
85* The number of rows to be operated on i.e the number of rows
86* of the distributed submatrix sub( A ). M >= 0.
87*
88* N (global input) INTEGER
89* The number of columns to be operated on i.e the number of
90* columns of the distributed submatrix sub( A ). N >= 0.
91*
92* A (local input/local output) COMPLEX pointer into the
93* local memory to an array of dimension (LLD_A,LOCc(JA+N-1))
94* containing on entry the M-by-N matrix sub( A ). On exit,
95* the equilibrated distributed matrix. See EQUED for the
96* form of the equilibrated distributed submatrix.
97*
98* IA (global input) INTEGER
99* The row index in the global array A indicating the first
100* row of sub( A ).
101*
102* JA (global input) INTEGER
103* The column index in the global array A indicating the
104* first column of sub( A ).
105*
106* DESCA (global and local input) INTEGER array of dimension DLEN_.
107* The array descriptor for the distributed matrix A.
108*
109* R (local input) REAL array, dimension LOCr(M_A)
110* The row scale factors for sub( A ). R is aligned with the
111* distributed matrix A, and replicated across every process
112* column. R is tied to the distributed matrix A.
113*
114* C (local input) REAL array, dimension LOCc(N_A)
115* The column scale factors of sub( A ). C is aligned with the
116* distributed matrix A, and replicated down every process
117* row. C is tied to the distributed matrix A.
118*
119* ROWCND (global input) REAL
120* The global ratio of the smallest R(i) to the largest R(i),
121* IA <= i <= IA+M-1.
122*
123* COLCND (global input) REAL
124* The global ratio of the smallest C(i) to the largest C(i),
125* JA <= j <= JA+N-1.
126*
127* AMAX (global input) REAL
128* Absolute value of largest distributed submatrix entry.
129*
130* EQUED (global output) CHARACTER
131* Specifies the form of equilibration that was done.
132* = 'N': No equilibration
133* = 'R': Row equilibration, i.e., sub( A ) has been pre-
134* multiplied by diag(R(IA:IA+M-1)),
135* = 'C': Column equilibration, i.e., sub( A ) has been post-
136* multiplied by diag(C(JA:JA+N-1)),
137* = 'B': Both row and column equilibration, i.e., sub( A )
138* has been replaced by
139* diag(R(IA:IA+M-1)) * sub( A ) * diag(C(JA:JA+N-1)).
140*
141* Internal Parameters
142* ===================
143*
144* THRESH is a threshold value used to decide if row or column scaling
145* should be done based on the ratio of the row or column scaling
146* factors. If ROWCND < THRESH, row scaling is done, and if
147* COLCND < THRESH, column scaling is done.
148*
149* LARGE and SMALL are threshold values used to decide if row scaling
150* should be done based on the absolute size of the largest matrix
151* element. If AMAX > LARGE or AMAX < SMALL, row scaling is done.
152*
153* =====================================================================
154*
155* .. Parameters ..
156 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
157 $ lld_, mb_, m_, nb_, n_, rsrc_
158 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
159 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
160 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
161 REAL ONE, THRESH
162 parameter( one = 1.0e+0, thresh = 0.1e+0 )
163* ..
164* .. Local Scalars ..
165 INTEGER I, IACOL, IAROW, ICOFF, ICTXT, IIA, IOFFA,
166 $ iroff, j, jja, lda, mp, mycol, myrow, npcol,
167 $ nprow, nq
168 REAL CJ, LARGE, SMALL
169* ..
170* .. External Subroutines ..
171 EXTERNAL blacs_gridinfo, infog2l
172* ..
173* .. External Functions ..
174 INTEGER NUMROC
175 REAL PSLAMCH
176 EXTERNAL numroc, pslamch
177* ..
178* .. Intrinsic Functions ..
179 INTRINSIC mod
180* ..
181* .. Executable Statements ..
182*
183* Quick return if possible
184*
185 IF( m.LE.0 .OR. n.LE.0 ) THEN
186 equed = 'N'
187 RETURN
188 END IF
189*
190* Get grid parameters and compute local indexes
191*
192 ictxt = desca( ctxt_ )
193 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
194 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
195 $ iarow, iacol )
196 iroff = mod( ia-1, desca( mb_ ) )
197 icoff = mod( ja-1, desca( nb_ ) )
198 mp = numroc( m+iroff, desca( mb_ ), myrow, iarow, nprow )
199 nq = numroc( n+icoff, desca( nb_ ), mycol, iacol, npcol )
200 IF( myrow.EQ.iarow )
201 $ mp = mp - iroff
202 IF( mycol.EQ.iacol )
203 $ nq = nq - icoff
204 lda = desca( lld_ )
205*
206* Initialize LARGE and SMALL.
207*
208 small = pslamch( ictxt, 'Safe minimum' ) /
209 $ pslamch( ictxt, 'Precision' )
210 large = one / small
211*
212 IF( rowcnd.GE.thresh .AND. amax.GE.small .AND. amax.LE.large )
213 $ THEN
214*
215* No row scaling
216*
217 IF( colcnd.GE.thresh ) THEN
218*
219* No column scaling
220*
221 equed = 'N'
222*
223 ELSE
224*
225* Column scaling
226*
227 ioffa = (jja-1)*lda
228 DO 20 j = jja, jja+nq-1
229 cj = c( j )
230 DO 10 i = iia, iia+mp-1
231 a( ioffa + i ) = cj*a( ioffa + i )
232 10 CONTINUE
233 ioffa = ioffa + lda
234 20 CONTINUE
235 equed = 'C'
236 END IF
237*
238 ELSE IF( colcnd.GE.thresh ) THEN
239*
240* Row scaling, no column scaling
241*
242 ioffa = (jja-1)*lda
243 DO 40 j = jja, jja+nq-1
244 DO 30 i = iia, iia+mp-1
245 a( ioffa + i ) = r( i )*a( ioffa + i )
246 30 CONTINUE
247 ioffa = ioffa + lda
248 40 CONTINUE
249 equed = 'R'
250*
251 ELSE
252*
253* Row and column scaling
254*
255 ioffa = (jja-1)*lda
256 DO 60 j = jja, jja+nq-1
257 cj = c( j )
258 DO 50 i = iia, iia+mp-1
259 a( ioffa + i ) = cj*r( i )*a( ioffa + i )
260 50 CONTINUE
261 ioffa = ioffa + lda
262 60 CONTINUE
263 equed = 'B'
264*
265 END IF
266*
267 RETURN
268*
269* End of PCLAQGE
270*
271 END
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pclaqge(m, n, a, ia, ja, desca, r, c, rowcnd, colcnd, amax, equed)
Definition pclaqge.f:3