SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pslauum.f
Go to the documentation of this file.
1 SUBROUTINE pslauum( UPLO, N, A, IA, JA, DESCA )
2*
3* -- ScaLAPACK auxiliary routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 1, 1997
7*
8* .. Scalar Arguments ..
9 CHARACTER UPLO
10 INTEGER IA, JA, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 REAL A( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PSLAUUM computes the product U * U' or L' * L, where the triangular
21* factor U or L is stored in the upper or lower triangular part of
22* the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
23*
24* If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
25* overwriting the factor U in sub( A ).
26* If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
27* overwriting the factor L in sub( A ).
28*
29* This is the blocked form of the algorithm, calling Level 3 PBLAS.
30*
31* Notes
32* =====
33*
34* Each global data object is described by an associated description
35* vector. This vector stores the information required to establish
36* the mapping between an object element and its corresponding process
37* and memory location.
38*
39* Let A be a generic term for any 2D block cyclicly distributed array.
40* Such a global array has an associated description vector DESCA.
41* In the following comments, the character _ should be read as
42* "of the global array".
43*
44* NOTATION STORED IN EXPLANATION
45* --------------- -------------- --------------------------------------
46* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
47* DTYPE_A = 1.
48* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
49* the BLACS process grid A is distribu-
50* ted over. The context itself is glo-
51* bal, but the handle (the integer
52* value) may vary.
53* M_A (global) DESCA( M_ ) The number of rows in the global
54* array A.
55* N_A (global) DESCA( N_ ) The number of columns in the global
56* array A.
57* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
58* the rows of the array.
59* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
60* the columns of the array.
61* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
62* row of the array A is distributed.
63* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
64* first column of the array A is
65* distributed.
66* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
67* array. LLD_A >= MAX(1,LOCr(M_A)).
68*
69* Let K be the number of rows or columns of a distributed matrix,
70* and assume that its process grid has dimension p x q.
71* LOCr( K ) denotes the number of elements of K that a process
72* would receive if K were distributed over the p processes of its
73* process column.
74* Similarly, LOCc( K ) denotes the number of elements of K that a
75* process would receive if K were distributed over the q processes of
76* its process row.
77* The values of LOCr() and LOCc() may be determined via a call to the
78* ScaLAPACK tool function, NUMROC:
79* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
80* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
81* An upper bound for these quantities may be computed by:
82* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
83* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
84*
85* Arguments
86* =========
87*
88* UPLO (global input) CHARACTER*1
89* Specifies whether the triangular factor stored in the
90* distributed matrix sub( A ) is upper or lower triangular:
91* = 'U': Upper triangular
92* = 'L': Lower triangular
93*
94* N (global input) INTEGER
95* The number of rows and columns to be operated on, i.e. the
96* order of the triangular factor U or L. N >= 0.
97*
98* A (local input/local output) REAL pointer into the
99* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
100* On entry, the local pieces of the triangular factor L or U.
101* On exit, if UPLO = 'U', the upper triangle of the distributed
102* matrix sub( A ) is overwritten with the upper triangle of the
103* product U * U'; if UPLO = 'L', the lower triangle of sub( A )
104* is overwritten with the lower triangle of the product L' * L.
105*
106* IA (global input) INTEGER
107* The row index in the global array A indicating the first
108* row of sub( A ).
109*
110* JA (global input) INTEGER
111* The column index in the global array A indicating the
112* first column of sub( A ).
113*
114* DESCA (global and local input) INTEGER array of dimension DLEN_.
115* The array descriptor for the distributed matrix A.
116*
117* =====================================================================
118*
119* .. Parameters ..
120 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
121 $ LLD_, MB_, M_, NB_, N_, RSRC_
122 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
123 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
124 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
125 REAL ONE
126 parameter( one = 1.0e+0 )
127* ..
128* .. Local Scalars ..
129 INTEGER I, J, JB, JN
130* ..
131* .. External Subroutines ..
132 EXTERNAL psgemm, pslauu2, pstrmm, pssyrk
133* ..
134* .. External Functions ..
135 LOGICAL LSAME
136 INTEGER ICEIL
137 EXTERNAL iceil, lsame
138* ..
139* .. Intrinsic Functions ..
140 INTRINSIC min
141* ..
142* .. Executable Statements ..
143*
144* Quick return if possible
145*
146 IF( n.EQ.0 )
147 $ RETURN
148*
149 jn = min( iceil( ja, desca( nb_ ) ) * desca( nb_ ), ja+n-1 )
150 IF( lsame( uplo, 'U' ) ) THEN
151*
152* Compute the product U * U'.
153*
154* Handle first block separately
155*
156 jb = jn-ja+1
157 CALL pslauu2( 'Upper', jb, a, ia, ja, desca )
158 IF( jb.LE.n-1 ) THEN
159 CALL pssyrk( 'Upper', 'No transpose', jb, n-jb, one, a, ia,
160 $ ja+jb, desca, one, a, ia, ja, desca )
161 END IF
162*
163* Loop over remaining block of columns
164*
165 DO 10 j = jn+1, ja+n-1, desca( nb_ )
166 jb = min( n-j+ja, desca( nb_ ) )
167 i = ia + j - ja
168 CALL pstrmm( 'Right', 'Upper', 'Transpose', 'Non-unit',
169 $ j-ja, jb, one, a, i, j, desca, a, ia, j,
170 $ desca )
171 CALL pslauu2( 'Upper', jb, a, i, j, desca )
172 IF( j+jb.LE.ja+n-1 ) THEN
173 CALL psgemm( 'No transpose', 'Transpose', j-ja, jb,
174 $ n-j-jb+ja, one, a, ia, j+jb, desca, a, i,
175 $ j+jb, desca, one, a, ia, j, desca )
176 CALL pssyrk( 'Upper', 'No transpose', jb, n-j-jb+ja, one,
177 $ a, i, j+jb, desca, one, a, i, j, desca )
178 END IF
179 10 CONTINUE
180 ELSE
181*
182* Compute the product L' * L.
183*
184* Handle first block separately
185*
186 jb = jn-ja+1
187 CALL pslauu2( 'Lower', jb, a, ia, ja, desca )
188 IF( jb.LE.n-1 ) THEN
189 CALL pssyrk( 'Lower', 'Transpose', jb, n-jb, one, a, ia+jb,
190 $ ja, desca, one, a, ia, ja, desca )
191 END IF
192*
193* Loop over remaining block of columns
194*
195 DO 20 j = jn+1, ja+n-1, desca( nb_ )
196 jb = min( n-j+ja, desca( nb_ ) )
197 i = ia + j - ja
198 CALL pstrmm( 'Left', 'Lower', 'Transpose', 'Non-unit', jb,
199 $ j-ja, one, a, i, j, desca, a, i, ja, desca )
200 CALL pslauu2( 'Lower', jb, a, i, j, desca )
201 IF( j+jb.LE.ja+n-1 ) THEN
202 CALL psgemm( 'Transpose', 'No transpose', jb, j-ja,
203 $ n-j-jb+ja, one, a, i+jb, j, desca, a, i+jb,
204 $ ja, desca, one, a, i, ja, desca )
205 CALL pssyrk( 'Lower', 'Transpose', jb, n-j-jb+ja, one,
206 $ a, i+jb, j, desca, one, a, i, j, desca )
207 END IF
208 20 CONTINUE
209 END IF
210*
211 RETURN
212*
213* End of PSLAUUM
214*
215 END
#define min(A, B)
Definition pcgemr.c:181
subroutine pslauu2(uplo, n, a, ia, ja, desca)
Definition pslauu2.f:2
subroutine pslauum(uplo, n, a, ia, ja, desca)
Definition pslauum.f:2