SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zmmdda.f
Go to the documentation of this file.
1 SUBROUTINE zmmdda( M, N, ALPHA, A, LDA, BETA, B, LDB )
2*
3* -- PBLAS auxiliary routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* .. Scalar Arguments ..
9 INTEGER LDA, LDB, M, N
10 COMPLEX*16 ALPHA, BETA
11* ..
12* .. Array Arguments ..
13 COMPLEX*16 A( LDA, * ), B( LDB, * )
14* ..
15*
16* Purpose
17* =======
18*
19* ZMMDDA performs the following operation:
20*
21* A := alpha * A + beta * B,
22*
23* where alpha, beta are scalars and A and B are m by n matrices.
24*
25* Arguments
26* =========
27*
28* M (local input) INTEGER
29* On entry, M specifies the number of rows of A and B. M must
30* be at least zero.
31*
32* N (local input) INTEGER
33* On entry, N specifies the number of columns of A and B.
34* N must be at least zero.
35*
36* ALPHA (local input) COMPLEX*16
37* On entry, ALPHA specifies the scalar alpha. When ALPHA is
38* supplied as zero then the local entries of the array A need
39* not be set on input.
40*
41* A (local input/local output) COMPLEX*16 array
42* On entry, A is an array of dimension ( LDA, N ). On exit, the
43* leading m by n part of B has been added to the leading m by n
44* part of A.
45*
46* LDA (local input) INTEGER
47* On entry, LDA specifies the leading dimension of the array A.
48* LDA must be at least max( 1, M ).
49*
50* BETA (local input) COMPLEX*16
51* On entry, BETA specifies the scalar beta. When BETA is sup-
52* plied as zero then the local entries of the array B need not
53* be set on input.
54*
55* B (local input) COMPLEX*16 array
56* On entry, B is an array of dimension ( LDB, N ).
57*
58* LDB (local input) INTEGER
59* On entry, LDB specifies the leading dimension of the array B.
60* LDB must be at least max( 1, M ).
61*
62* -- Written on April 1, 1998 by
63* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
64*
65* =====================================================================
66*
67* .. Parameters ..
68 COMPLEX*16 ONE, ZERO
69 parameter( one = ( 1.0d+0, 0.0d+0 ),
70 $ zero = ( 0.0d+0, 0.0d+0 ) )
71* ..
72* .. Local Scalars ..
73 INTEGER I, J
74* ..
75* .. External Subroutines ..
76 EXTERNAL zaxpy, zcopy, zscal
77* ..
78* .. Executable Statements ..
79*
80 IF( beta.EQ.one ) THEN
81 IF( alpha.EQ.zero ) THEN
82 DO 20 j = 1, n
83 CALL zcopy( m, b( 1, j ), 1, a( 1, j ), 1 )
84* DO 10 I = 1, M
85* A( I, J ) = B( I, J )
86* 10 CONTINUE
87 20 CONTINUE
88 ELSE IF( alpha.NE.one ) THEN
89 DO 40 j = 1, n
90 DO 30 i = 1, m
91 a( i, j ) = b( i, j ) + alpha * a( i, j )
92 30 CONTINUE
93 40 CONTINUE
94 ELSE
95 DO 60 j = 1, n
96 CALL zaxpy( m, one, b( 1, j ), 1, a( 1, j ), 1 )
97* DO 50 I = 1, M
98* A( I, J ) = B( I, J ) + A( I, J )
99* 50 CONTINUE
100 60 CONTINUE
101 END IF
102 ELSE IF( beta.NE.zero ) THEN
103 IF( alpha.EQ.zero ) THEN
104 DO 80 j = 1, n
105 DO 70 i = 1, m
106 a( i, j ) = beta * b( i, j )
107 70 CONTINUE
108 80 CONTINUE
109 ELSE IF( alpha.NE.one ) THEN
110 DO 100 j = 1, n
111 DO 90 i = 1, m
112 a( i, j ) = beta * b( i, j ) + alpha * a( i, j )
113 90 CONTINUE
114 100 CONTINUE
115 ELSE
116 DO 120 j = 1, n
117 CALL zaxpy( m, beta, b( 1, j ), 1, a( 1, j ), 1 )
118* DO 110 I = 1, M
119* A( I, J ) = BETA * B( I, J ) + A( I, J )
120* 110 CONTINUE
121 120 CONTINUE
122 END IF
123 ELSE
124 IF( alpha.EQ.zero ) THEN
125 DO 140 j = 1, n
126 DO 130 i = 1, m
127 a( i, j ) = zero
128 130 CONTINUE
129 140 CONTINUE
130 ELSE IF( alpha.NE.one ) THEN
131 DO 160 j = 1, n
132 CALL zscal( m, alpha, a( 1, j ), 1 )
133* DO 150 I = 1, M
134* A( I, J ) = ALPHA * A( I, J )
135* 150 CONTINUE
136 160 CONTINUE
137 END IF
138 END IF
139*
140 RETURN
141*
142* End of ZMMDDA
143*
144 END
subroutine zmmdda(m, n, alpha, a, lda, beta, b, ldb)
Definition zmmdda.f:2