SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
psorgl2.f
Go to the documentation of this file.
1 SUBROUTINE psorgl2( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, K, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 REAL A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PSORGL2 generates an M-by-N real distributed matrix Q denoting
21* A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as
22* the first M rows of a product of K elementary reflectors of order N
23*
24* Q = H(k) . . . H(2) H(1)
25*
26* as returned by PSGELQF.
27*
28* Notes
29* =====
30*
31* Each global data object is described by an associated description
32* vector. This vector stores the information required to establish
33* the mapping between an object element and its corresponding process
34* and memory location.
35*
36* Let A be a generic term for any 2D block cyclicly distributed array.
37* Such a global array has an associated description vector DESCA.
38* In the following comments, the character _ should be read as
39* "of the global array".
40*
41* NOTATION STORED IN EXPLANATION
42* --------------- -------------- --------------------------------------
43* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
44* DTYPE_A = 1.
45* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46* the BLACS process grid A is distribu-
47* ted over. The context itself is glo-
48* bal, but the handle (the integer
49* value) may vary.
50* M_A (global) DESCA( M_ ) The number of rows in the global
51* array A.
52* N_A (global) DESCA( N_ ) The number of columns in the global
53* array A.
54* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
55* the rows of the array.
56* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
57* the columns of the array.
58* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59* row of the array A is distributed.
60* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61* first column of the array A is
62* distributed.
63* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
64* array. LLD_A >= MAX(1,LOCr(M_A)).
65*
66* Let K be the number of rows or columns of a distributed matrix,
67* and assume that its process grid has dimension p x q.
68* LOCr( K ) denotes the number of elements of K that a process
69* would receive if K were distributed over the p processes of its
70* process column.
71* Similarly, LOCc( K ) denotes the number of elements of K that a
72* process would receive if K were distributed over the q processes of
73* its process row.
74* The values of LOCr() and LOCc() may be determined via a call to the
75* ScaLAPACK tool function, NUMROC:
76* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78* An upper bound for these quantities may be computed by:
79* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81*
82* Arguments
83* =========
84*
85* M (global input) INTEGER
86* The number of rows to be operated on i.e the number of rows
87* of the distributed submatrix Q. M >= 0.
88*
89* N (global input) INTEGER
90* The number of columns to be operated on i.e the number of
91* columns of the distributed submatrix Q. N >= M >= 0.
92*
93* K (global input) INTEGER
94* The number of elementary reflectors whose product defines the
95* matrix Q. M >= K >= 0.
96*
97* A (local input/local output) REAL pointer into the
98* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
99* On entry, the i-th row must contain the vector which defines
100* the elementary reflector H(i), IA <= i <= IA+K-1, as
101* returned by PSGELQF in the K rows of its distributed matrix
102* argument A(IA:IA+K-1,JA:*). On exit, this array contains the
103* local pieces of the M-by-N distributed matrix Q.
104*
105* IA (global input) INTEGER
106* The row index in the global array A indicating the first
107* row of sub( A ).
108*
109* JA (global input) INTEGER
110* The column index in the global array A indicating the
111* first column of sub( A ).
112*
113* DESCA (global and local input) INTEGER array of dimension DLEN_.
114* The array descriptor for the distributed matrix A.
115*
116* TAU (local input) REAL, array, dimension LOCr(IA+K-1).
117* This array contains the scalar factors TAU(i) of the
118* elementary reflectors H(i) as returned by PSGELQF.
119* TAU is tied to the distributed matrix A.
120*
121* WORK (local workspace/local output) REAL array,
122* dimension (LWORK)
123* On exit, WORK(1) returns the minimal and optimal LWORK.
124*
125* LWORK (local or global input) INTEGER
126* The dimension of the array WORK.
127* LWORK is local input and must be at least
128* LWORK >= NqA0 + MAX( 1, MpA0 ), where
129*
130* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
131* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
132* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
133* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
134* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
135*
136* INDXG2P and NUMROC are ScaLAPACK tool functions;
137* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
138* the subroutine BLACS_GRIDINFO.
139*
140* If LWORK = -1, then LWORK is global input and a workspace
141* query is assumed; the routine only calculates the minimum
142* and optimal size for all work arrays. Each of these
143* values is returned in the first entry of the corresponding
144* work array, and no error message is issued by PXERBLA.
145*
146*
147* INFO (local output) INTEGER
148* = 0: successful exit
149* < 0: If the i-th argument is an array and the j-entry had
150* an illegal value, then INFO = -(i*100+j), if the i-th
151* argument is a scalar and had an illegal value, then
152* INFO = -i.
153*
154* =====================================================================
155*
156* .. Parameters ..
157 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
158 $ lld_, mb_, m_, nb_, n_, rsrc_
159 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
160 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
161 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
162 REAL ONE, ZERO
163 parameter( one = 1.0e+0, zero = 0.0e+0 )
164* ..
165* .. Local Scalars ..
166 LOGICAL LQUERY
167 CHARACTER COLBTOP, ROWBTOP
168 INTEGER IACOL, IAROW, I, ICTXT, II, J, KP, LWMIN, MPA0,
169 $ mycol, myrow, npcol, nprow, nqa0
170 REAL TAUI
171* ..
172* .. External Subroutines ..
173 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, pselset,
174 $ pslarf, pslaset, psscal, pb_topget,
175 $ pb_topset, pxerbla
176* ..
177* .. External Functions ..
178 INTEGER INDXG2L, INDXG2P, NUMROC
179 EXTERNAL indxg2l, indxg2p, numroc
180* ..
181* .. Intrinsic Functions ..
182 INTRINSIC max, min, mod, real
183* ..
184* .. Executable Statements ..
185*
186* Get grid parameters
187*
188 ictxt = desca( ctxt_ )
189 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
190*
191* Test the input parameters
192*
193 info = 0
194 IF( nprow.EQ.-1 ) THEN
195 info = -(700+ctxt_)
196 ELSE
197 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 7, info )
198 IF( info.EQ.0 ) THEN
199 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
200 $ nprow )
201 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
202 $ npcol )
203 mpa0 = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
204 $ myrow, iarow, nprow )
205 nqa0 = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
206 $ mycol, iacol, npcol )
207 lwmin = nqa0 + max( 1, mpa0 )
208*
209 work( 1 ) = real( lwmin )
210 lquery = ( lwork.EQ.-1 )
211 IF( n.LT.m ) THEN
212 info = -2
213 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
214 info = -3
215 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
216 info = -10
217 END IF
218 END IF
219 END IF
220 IF( info.NE.0 ) THEN
221 CALL pxerbla( ictxt, 'PSORGL2', -info )
222 CALL blacs_abort( ictxt, 1 )
223 RETURN
224 ELSE IF( lquery ) THEN
225 RETURN
226 END IF
227*
228* Quick return if possible
229*
230 IF( m.LE.0 )
231 $ RETURN
232*
233 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
234 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
235 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
236 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'D-ring' )
237*
238 IF( k.LT.m ) THEN
239*
240* Initialise rows ia+k:ia+m-1 to rows of the unit matrix
241*
242 CALL pslaset( 'All', m-k, k, zero, zero, a, ia+k, ja, desca )
243 CALL pslaset( 'All', m-k, n-k, zero, one, a, ia+k, ja+k,
244 $ desca )
245*
246 END IF
247*
248 taui = zero
249 kp = numroc( ia+k-1, desca( mb_ ), myrow, desca( rsrc_ ), nprow )
250*
251 DO 10 i = ia+k-1, ia, -1
252*
253* Apply H(i) to A(i:ia+m-1,ja+i-ia:ja+n-1) from the right
254*
255 j = ja + i - ia
256 ii = indxg2l( i, desca( mb_ ), myrow, desca( rsrc_ ), nprow )
257 iarow = indxg2p( i, desca( mb_ ), myrow, desca( rsrc_ ),
258 $ nprow )
259 IF( myrow.EQ.iarow )
260 $ taui = tau( min( ii, kp ) )
261 IF( j.LT.ja+n-1 ) THEN
262 IF( i.LT.ia+m-1 ) THEN
263 CALL pselset( a, i, j, desca, one )
264 CALL pslarf( 'Right', m-i+ia-1, n-j+ja, a, i, j, desca,
265 $ desca( m_ ), tau, a, i+1, j, desca, work )
266 END IF
267 CALL psscal( n-j+ja-1, -taui, a, i, j+1, desca,
268 $ desca( m_ ) )
269 END IF
270 CALL pselset( a, i, j, desca, one-taui )
271*
272* Set A(i,ja:j-1) to zero
273*
274 CALL pslaset( 'All', 1, j-ja, zero, zero, a, i, ja, desca )
275*
276 10 CONTINUE
277*
278 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
279 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
280*
281 work( 1 ) = real( lwmin )
282*
283 RETURN
284*
285* End of PSORGL2
286*
287 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition psblastst.f:6863
subroutine pselset(a, ia, ja, desca, alpha)
Definition pselset.f:2
subroutine pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pslarf.f:3
subroutine psorgl2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition psorgl2.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2