SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
psgeqlrv.f
Go to the documentation of this file.
1 SUBROUTINE psgeqlrv( M, N, A, IA, JA, DESCA, TAU, WORK )
2*
3* -- ScaLAPACK routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 28, 2001
7*
8* .. Scalar Arguments ..
9 INTEGER IA, JA, M, N
10* ..
11* .. Array Arguments ..
12 INTEGER DESCA( * )
13 REAL A( * ), TAU( * ), WORK( * )
14* ..
15*
16* Purpose
17* =======
18*
19* PSGEQLRV computes sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from L, Q
20* computed by PSGEQLF.
21*
22* Notes
23* =====
24*
25* Each global data object is described by an associated description
26* vector. This vector stores the information required to establish
27* the mapping between an object element and its corresponding process
28* and memory location.
29*
30* Let A be a generic term for any 2D block cyclicly distributed array.
31* Such a global array has an associated description vector DESCA.
32* In the following comments, the character _ should be read as
33* "of the global array".
34*
35* NOTATION STORED IN EXPLANATION
36* --------------- -------------- --------------------------------------
37* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
38* DTYPE_A = 1.
39* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
40* the BLACS process grid A is distribu-
41* ted over. The context itself is glo-
42* bal, but the handle (the integer
43* value) may vary.
44* M_A (global) DESCA( M_ ) The number of rows in the global
45* array A.
46* N_A (global) DESCA( N_ ) The number of columns in the global
47* array A.
48* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
49* the rows of the array.
50* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
51* the columns of the array.
52* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
53* row of the array A is distributed.
54* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
55* first column of the array A is
56* distributed.
57* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
58* array. LLD_A >= MAX(1,LOCr(M_A)).
59*
60* Let K be the number of rows or columns of a distributed matrix,
61* and assume that its process grid has dimension p x q.
62* LOCr( K ) denotes the number of elements of K that a process
63* would receive if K were distributed over the p processes of its
64* process column.
65* Similarly, LOCc( K ) denotes the number of elements of K that a
66* process would receive if K were distributed over the q processes of
67* its process row.
68* The values of LOCr() and LOCc() may be determined via a call to the
69* ScaLAPACK tool function, NUMROC:
70* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
71* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
72* An upper bound for these quantities may be computed by:
73* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
74* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
75*
76* Arguments
77* =========
78*
79* M (global input) INTEGER
80* The number of rows to be operated on, i.e. the number of rows
81* of the distributed submatrix sub( A ). M >= 0.
82*
83* N (global input) INTEGER
84* The number of columns to be operated on, i.e. the number of
85* columns of the distributed submatrix sub( A ). N >= 0.
86*
87* A (local input/local output) REAL pointer into the
88* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
89* On entry, sub( A ) contains the the factors L and Q computed
90* by PSGEQLF. On exit, the original matrix is restored.
91*
92* IA (global input) INTEGER
93* The row index in the global array A indicating the first
94* row of sub( A ).
95*
96* JA (global input) INTEGER
97* The column index in the global array A indicating the
98* first column of sub( A ).
99*
100* DESCA (global and local input) INTEGER array of dimension DLEN_.
101* The array descriptor for the distributed matrix A.
102*
103* TAU (local input) REAL, array, dimension LOCc(N_A).
104* This array contains the scalar factors TAU of the elementary
105* reflectors computed by PSGEQLF. TAU is tied to the dis-
106* tributed matrix A.
107*
108* WORK (local workspace) REAL array, dimension (LWORK)
109* LWORK = NB_A * ( 2*Mp0 + Nq0 + NB_A ), where
110* Mp0 = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ) * NB_A,
111* Nq0 = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ) * MB_A,
112* IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
113* IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
114* NPROW ),
115* IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
116* NPCOL ),
117* and NUMROC, INDXG2P are ScaLAPACK tool functions;
118* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
119* the subroutine BLACS_GRIDINFO.
120*
121* =====================================================================
122*
123* .. Parameters ..
124 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
125 $ LLD_, MB_, M_, NB_, N_, RSRC_
126 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
127 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
128 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
129 REAL ONE, ZERO
130 parameter( one = 1.0e+0, zero = 0.0e+0 )
131* ..
132* .. Local Scalars ..
133 CHARACTER COLBTOP, ROWBTOP
134 INTEGER IACOL, IAROW, ICTXT, IIA, IPT, IPV, IPW, IROFF,
135 $ IV, J, JB, JJA, JN, K, MP, MYCOL, MYROW, NPCOL,
136 $ NPROW
137* ..
138* .. Local Arrays ..
139 INTEGER DESCV( DLEN_ )
140* ..
141* .. External Subroutines ..
142 EXTERNAL blacs_gridinfo, descset, infog2l, pslacpy,
143 $ pslarfb, pslarft, pslaset, pb_topget,
144 $ pb_topset
145* ..
146* .. External Functions ..
147 INTEGER ICEIL, NUMROC
148 EXTERNAL iceil, numroc
149* ..
150* .. Intrinsic Functions ..
151 INTRINSIC max, min, mod
152* ..
153* .. Executable Statements ..
154*
155* Get grid parameters
156*
157 ictxt = desca( ctxt_ )
158 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
159*
160 k = min( m, n )
161 jn = min( iceil( ja+n-k, desca( nb_ ) ) * desca( nb_ ), ja+n-1 )
162*
163 iroff = mod( ia-1, desca( mb_ ) )
164 CALL infog2l( ia, ja+n-k, desca, nprow, npcol, myrow, mycol,
165 $ iia, jja, iarow, iacol )
166 mp = numroc( m+iroff, desca( mb_ ), myrow, iarow, nprow )
167 ipv = 1
168 ipt = ipv + mp * desca( nb_ )
169 ipw = ipt + desca( nb_ ) * desca( nb_ )
170 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
171 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
172 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'I-ring' )
173 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
174*
175 CALL descset( descv, m+iroff, desca( nb_ ), desca( mb_ ),
176 $ desca( nb_ ), iarow, iacol, ictxt, max( 1, mp ) )
177*
178* Handle first block separately
179*
180 iv = 1 + m - k + iroff
181 jb = jn - ja - n + k + 1
182*
183* Compute upper triangular matrix T
184*
185 CALL pslarft( 'Backward', 'Columnwise', m-n+jn-ja+1, jb, a, ia,
186 $ ja+n-k, desca, tau, work( ipt ), work( ipw ) )
187*
188* Copy Householder vectors into workspace
189*
190 CALL pslacpy( 'All', m-n+jn-ja+1, jb, a, ia, ja+n-k, desca,
191 $ work( ipv ), iroff+1, 1, descv )
192 CALL pslaset( 'Lower', jb, jb, zero, one, work( ipv ), iv,
193 $ 1, descv )
194*
195* Zeoes the strict upper triangular part of A to get block
196* row of L
197*
198 CALL pslaset( 'All', m-k, jb, zero, zero, a, ia, ja+n-k,
199 $ desca )
200 CALL pslaset( 'Upper', jb, jb-1, zero, zero, a, ia+m-k,
201 $ ja+n-k+1, desca )
202*
203* Apply block Householder transformation
204*
205 CALL pslarfb( 'Left', 'No transpose', 'Backward', 'Columnwise',
206 $ m-n+jn-ja+1, jn-ja+1, jb, work( ipv ), iroff+1, 1,
207 $ descv, work( ipt ), a, ia, ja, desca, work( ipw ) )
208*
209 descv( csrc_ ) = mod( descv( csrc_ ) + 1, npcol )
210*
211* Loop over the remaining column blocks
212*
213 DO 10 j = jn+1, ja+n-1, desca( nb_ )
214 jb = min( ja+n-j, desca( nb_ ) )
215 iv = 1 + m - n + j - ja + iroff
216*
217* Compute upper triangular matrix T
218*
219 CALL pslarft( 'Backward', 'Columnwise', m-n+j+jb-ja, jb, a, ia,
220 $ j, desca, tau, work( ipt ), work( ipw ) )
221*
222* Copy Householder vectors into workspace
223*
224 CALL pslacpy( 'All', m-n+j+jb-ja, jb, a, ia, j, desca,
225 $ work( ipv ), iroff+1, 1, descv )
226 CALL pslaset( 'Lower', jb, jb, zero, one, work( ipv ), iv,
227 $ 1, descv )
228*
229* Zeoes the strict upper triangular part of sub( A ) to get
230* block row of L
231*
232 CALL pslaset( 'All', m-n+j-ja, jb, zero, zero, a, ia, j,
233 $ desca )
234 CALL pslaset( 'Upper', jb, jb-1, zero, zero, a, ia+m-n+j-ja,
235 $ j+1, desca )
236*
237* Apply block Householder transformation
238*
239 CALL pslarfb( 'Left', 'No transpose', 'Backward', 'Columnwise',
240 $ m-n+j+jb-ja, j+jb-ja, jb, work( ipv ), iroff+1,
241 $ 1, descv, work( ipt ), a, ia, ja, desca,
242 $ work( ipw ) )
243*
244 descv( csrc_ ) = mod( descv( csrc_ ) + 1, npcol )
245*
246 10 CONTINUE
247*
248 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
249 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
250*
251 RETURN
252*
253* End of PSGEQLRV
254*
255 END
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition psblastst.f:6863
subroutine psgeqlrv(m, n, a, ia, ja, desca, tau, work)
Definition psgeqlrv.f:2
subroutine pslacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
Definition pslacpy.f:3
subroutine pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pslarfb.f:3
subroutine pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pslarft.f:3