ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pcgebdrv.f
Go to the documentation of this file.
1  SUBROUTINE pcgebdrv( M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP,
2  $ WORK, INFO )
3 *
4 * -- ScaLAPACK routine (version 1.7) --
5 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6 * and University of California, Berkeley.
7 * May 1, 1997
8 *
9 * .. Scalar Arguments ..
10  INTEGER INFO, IA, JA, M, N
11 * ..
12 * .. Array Arguments ..
13  INTEGER DESCA( * )
14  REAL D( * ), E( * )
15  COMPLEX A( * ), TAUP( * ), TAUQ( * ), WORK( * )
16 * ..
17 *
18 * Purpose
19 * =======
20 *
21 * PCGEBDRV computes sub( A ) = A(IA:IA+M-1,JA:JA+N-1) from sub( A ),
22 * Q, P returned by PCGEBRD:
23 *
24 * sub( A ) := Q * B * P'.
25 *
26 * Notes
27 * =====
28 *
29 * Each global data object is described by an associated description
30 * vector. This vector stores the information required to establish
31 * the mapping between an object element and its corresponding process
32 * and memory location.
33 *
34 * Let A be a generic term for any 2D block cyclicly distributed array.
35 * Such a global array has an associated description vector DESCA.
36 * In the following comments, the character _ should be read as
37 * "of the global array".
38 *
39 * NOTATION STORED IN EXPLANATION
40 * --------------- -------------- --------------------------------------
41 * DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
42 * DTYPE_A = 1.
43 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
44 * the BLACS process grid A is distribu-
45 * ted over. The context itself is glo-
46 * bal, but the handle (the integer
47 * value) may vary.
48 * M_A (global) DESCA( M_ ) The number of rows in the global
49 * array A.
50 * N_A (global) DESCA( N_ ) The number of columns in the global
51 * array A.
52 * MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
53 * the rows of the array.
54 * NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
55 * the columns of the array.
56 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
57 * row of the array A is distributed.
58 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
59 * first column of the array A is
60 * distributed.
61 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
62 * array. LLD_A >= MAX(1,LOCr(M_A)).
63 *
64 * Let K be the number of rows or columns of a distributed matrix,
65 * and assume that its process grid has dimension p x q.
66 * LOCr( K ) denotes the number of elements of K that a process
67 * would receive if K were distributed over the p processes of its
68 * process column.
69 * Similarly, LOCc( K ) denotes the number of elements of K that a
70 * process would receive if K were distributed over the q processes of
71 * its process row.
72 * The values of LOCr() and LOCc() may be determined via a call to the
73 * ScaLAPACK tool function, NUMROC:
74 * LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
75 * LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
76 * An upper bound for these quantities may be computed by:
77 * LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
78 * LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
79 *
80 * Arguments
81 * =========
82 *
83 * M (global input) INTEGER
84 * The number of rows to be operated on, i.e. the number of rows
85 * of the distributed submatrix sub( A ). M >= 0.
86 *
87 * N (global input) INTEGER
88 * The number of columns to be operated on, i.e. the number of
89 * columns of the distributed submatrix sub( A ). N >= 0.
90 *
91 * A (local input/local output) COMPLEX pointer into the
92 * local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
93 * On entry, this array contains the local pieces of sub( A )
94 * as returned by PCGEBRD. On exit, the original distribu-
95 * ted matrix sub( A ) is restored.
96 *
97 * IA (global input) INTEGER
98 * The row index in the global array A indicating the first
99 * row of sub( A ).
100 *
101 * JA (global input) INTEGER
102 * The column index in the global array A indicating the
103 * first column of sub( A ).
104 *
105 * DESCA (global and local input) INTEGER array of dimension DLEN_.
106 * The array descriptor for the distributed matrix A.
107 *
108 * D (local input) REAL array, dimension
109 * LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise.
110 * The distributed diagonal elements of the bidiagonal matrix
111 * B: D(i) = A(i,i). D is tied to the distributed matrix A.
112 *
113 * E (local input) REAL array, dimension
114 * LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
115 * The distributed off-diagonal elements of the bidiagonal
116 * distributed matrix B:
117 * if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
118 * if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
119 * E is tied to the distributed matrix A.
120 *
121 * TAUQ (local input) COMPLEX array dimension
122 * LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary
123 * reflectors which represent the unitary matrix Q. TAUQ is
124 * tied to the distributed matrix A. See Further Details.
125 *
126 * TAUP (local input) COMPLEX array, dimension
127 * LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary
128 * reflectors which represent the unitary matrix P. TAUP is
129 * tied to the distributed matrix A. See Further Details.
130 *
131 * WORK (local workspace) COMPLEX array, dimension (LWORK)
132 * LWORK >= 2*NB*( MP + NQ + NB )
133 *
134 * where NB = MB_A = NB_A,
135 * IROFFA = MOD( IA-1, NB ), ICOFFA = MOD( JA-1, NB ),
136 * IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ),
137 * IACOL = INDXG2P( JA, NB, MYCOL, CSRC_A, NPCOL ),
138 * MP = NUMROC( M+IROFFA, NB, MYROW, IAROW, NPROW ),
139 * NQ = NUMROC( N+ICOFFA, NB, MYCOL, IACOL, NPCOL ).
140 *
141 * INDXG2P and NUMROC are ScaLAPACK tool functions;
142 * MYROW, MYCOL, NPROW and NPCOL can be determined by calling
143 * the subroutine BLACS_GRIDINFO.
144 *
145 * INFO (global output) INTEGER
146 * On exit, if INFO <> 0, a discrepancy has been found between
147 * the diagonal and off-diagonal elements of A and the copies
148 * contained in the arrays D and E.
149 *
150 * =====================================================================
151 *
152 * .. Parameters ..
153  INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
154  $ lld_, mb_, m_, nb_, n_, rsrc_
155  parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
156  $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
157  $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
158  REAL REIGHT, RZERO
159  parameter( reight = 8.0e+0, rzero = 0.0e+0 )
160  COMPLEX ONE, ZERO
161  parameter( one = ( 1.0e+0, 0.0e+0 ),
162  $ zero = ( 0.0e+0, 0.0e+0 ) )
163 * ..
164 * .. Local Scalars ..
165  INTEGER I, IACOL, IAROW, ICTXT, IIA, IL, IPTP, IPTQ,
166  $ ipv, ipw, ipwk, ioff, iv, j, jb, jja, jl, jv,
167  $ k, mn, mp, mycol, myrow, nb, npcol, nprow, nq
168  REAL ADDBND, D2, E2
169  COMPLEX D1, E1
170 * ..
171 * .. Local Arrays ..
172  INTEGER DESCD( DLEN_ ), DESCE( DLEN_ ), DESCV( DLEN_ ),
173  $ descw( dlen_ )
174 * ..
175 * .. External Subroutines ..
176  EXTERNAL blacs_gridinfo, descset, igsum2d, infog2l,
178  $ pcelget, pselget
179 * ..
180 * .. External Functions ..
181  INTEGER INDXG2P, NUMROC
182  REAL PSLAMCH
183  EXTERNAL indxg2p, numroc, pslamch
184 * ..
185 * .. Intrinsic Functions ..
186  INTRINSIC abs, cmplx, max, min, mod
187 * ..
188 * .. Executable Statements ..
189 *
190 * Get grid parameters
191 *
192  ictxt = desca( ctxt_ )
193  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
194 *
195  info = 0
196  nb = desca( mb_ )
197  ioff = mod( ia-1, nb )
198  CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
199  $ iarow, iacol )
200  mp = numroc( m+ioff, nb, myrow, iarow, nprow )
201  nq = numroc( n+ioff, nb, mycol, iacol, npcol )
202  ipv = 1
203  ipw = ipv + mp*nb
204  iptp = ipw + nq*nb
205  iptq = iptp + nb*nb
206  ipwk = iptq + nb*nb
207 *
208  iv = 1
209  jv = 1
210  mn = min( m, n )
211  il = max( ( (ia+mn-2) / nb )*nb + 1, ia )
212  jl = max( ( (ja+mn-2) / nb )*nb + 1, ja )
213  iarow = indxg2p( il, nb, myrow, desca( rsrc_ ), nprow )
214  iacol = indxg2p( jl, nb, mycol, desca( csrc_ ), npcol )
215  CALL descset( descv, ia+m-il, nb, nb, nb, iarow, iacol, ictxt,
216  $ max( 1, mp ) )
217  CALL descset( descw, nb, ja+n-jl, nb, nb, iarow, iacol, ictxt,
218  $ nb )
219 *
220  addbnd = reight * pslamch( ictxt, 'eps' )
221 *
222 * When A is an upper bidiagonal form
223 *
224  IF( m.GE.n ) THEN
225 *
226  CALL descset( descd, 1, ja+mn-1, 1, desca( nb_ ), myrow,
227  $ desca( csrc_ ), desca( ctxt_ ), 1 )
228  CALL descset( desce, ia+mn-1, 1, desca( mb_ ), 1,
229  $ desca( rsrc_ ), mycol, desca( ctxt_ ),
230  $ desca( lld_ ) )
231 *
232  DO 10 j = 0, mn-1
233  d1 = zero
234  e1 = zero
235  d2 = rzero
236  e2 = rzero
237  CALL pselget( ' ', ' ', d2, d, 1, ja+j, descd )
238  CALL pcelget( 'Columnwise', ' ', d1, a, ia+j, ja+j, desca )
239  IF( j.LT.(mn-1) ) THEN
240  CALL pselget( ' ', ' ', e2, e, ia+j, 1, desce )
241  CALL pcelget( 'Rowwise', ' ', e1, a, ia+j, ja+j+1,
242  $ desca )
243  END IF
244 *
245  IF( ( abs( d1 - cmplx( d2 ) ).GT.( abs( d2 )*addbnd ) ) .OR.
246  $ ( abs( e1 - cmplx( e2 ) ).GT.( abs( e2 )*addbnd ) ) )
247  $ info = info + 1
248  10 CONTINUE
249 *
250  DO 20 j = jl, ja+nb-ioff, -nb
251  jb = min( ja+n-j, nb )
252  i = ia + j - ja
253  k = i - ia + 1
254 *
255 * Compute upper triangular matrix TQ from TAUQ.
256 *
257  CALL pclarft( 'Forward', 'Columnwise', m-k+1, jb, a, i, j,
258  $ desca, tauq, work( iptq ), work( ipwk ) )
259 *
260 * Copy Householder vectors into workspace.
261 *
262  CALL pclacpy( 'Lower', m-k+1, jb, a, i, j, desca,
263  $ work( ipv ), iv, jv, descv )
264  CALL pclaset( 'Upper', m-k+1, jb, zero, one, work( ipv ),
265  $ iv, jv, descv )
266 *
267 * Zero out the strict lower triangular part of A.
268 *
269  CALL pclaset( 'Lower', m-k, jb, zero, zero, a, i+1, j,
270  $ desca )
271 *
272 * Compute upper triangular matrix TP from TAUP.
273 *
274  CALL pclarft( 'Forward', 'Rowwise', n-k, jb, a, i, j+1,
275  $ desca, taup, work( iptp ), work( ipwk ) )
276 *
277 * Copy Householder vectors into workspace.
278 *
279  CALL pclacpy( 'Upper', jb, n-k, a, i, j+1, desca,
280  $ work( ipw ), iv, jv+1, descw )
281  CALL pclaset( 'Lower', jb, n-k, zero, one, work( ipw ), iv,
282  $ jv+1, descw )
283 *
284 * Zero out the strict+1 upper triangular part of A.
285 *
286  CALL pclaset( 'Upper', jb, n-k-1, zero, zero, a, i, j+2,
287  $ desca )
288 *
289 * Apply block Householder transformation from Left.
290 *
291  CALL pclarfb( 'Left', 'No transpose', 'Forward',
292  $ 'Columnwise', m-k+1, n-k+1, jb, work( ipv ),
293  $ iv, jv, descv, work( iptq ), a, i, j, desca,
294  $ work( ipwk ) )
295 *
296 * Apply block Householder transformation from Right.
297 *
298  CALL pclarfb( 'Right', 'Conjugate transpose', 'Forward',
299  $ 'Rowwise', m-k+1, n-k, jb, work( ipw ), iv,
300  $ jv+1, descw, work( iptp ), a, i, j+1, desca,
301  $ work( ipwk ) )
302 *
303  descv( m_ ) = descv( m_ ) + nb
304  descv( rsrc_ ) = mod( descv( rsrc_ ) + nprow - 1, nprow )
305  descv( csrc_ ) = mod( descv( csrc_ ) + npcol - 1, npcol )
306  descw( n_ ) = descw( n_ ) + nb
307  descw( rsrc_ ) = descv( rsrc_ )
308  descw( csrc_ ) = descv( csrc_ )
309 *
310  20 CONTINUE
311 *
312 * Handle first block separately
313 *
314  jb = min( n, nb - ioff )
315  iv = ioff + 1
316  jv = ioff + 1
317 *
318 * Compute upper triangular matrix TQ from TAUQ.
319 *
320  CALL pclarft( 'Forward', 'Columnwise', m, jb, a, ia, ja, desca,
321  $ tauq, work( iptq ), work( ipwk ) )
322 *
323 * Copy Householder vectors into workspace.
324 *
325  CALL pclacpy( 'Lower', m, jb, a, ia, ja, desca, work( ipv ),
326  $ iv, jv, descv )
327  CALL pclaset( 'Upper', m, jb, zero, one, work( ipv ), iv, jv,
328  $ descv )
329 *
330 * Zero out the strict lower triangular part of A.
331 *
332  CALL pclaset( 'Lower', m-1, jb, zero, zero, a, ia+1, ja,
333  $ desca )
334 *
335 * Compute upper triangular matrix TP from TAUP.
336 *
337  CALL pclarft( 'Forward', 'Rowwise', n-1, jb, a, ia, ja+1,
338  $ desca, taup, work( iptp ), work( ipwk ) )
339 *
340 * Copy Householder vectors into workspace.
341 *
342  CALL pclacpy( 'Upper', jb, n-1, a, ia, ja+1, desca,
343  $ work( ipw ), iv, jv+1, descw )
344  CALL pclaset( 'Lower', jb, n-1, zero, one, work( ipw ), iv,
345  $ jv+1, descw )
346 *
347 * Zero out the strict+1 upper triangular part of A.
348 *
349  CALL pclaset( 'Upper', jb, n-2, zero, zero, a, ia, ja+2,
350  $ desca )
351 *
352 * Apply block Householder transformation from left.
353 *
354  CALL pclarfb( 'Left', 'No transpose', 'Forward', 'Columnwise',
355  $ m, n, jb, work( ipv ), iv, jv, descv,
356  $ work( iptq ), a, ia, ja, desca, work( ipwk ) )
357 *
358 * Apply block Householder transformation from right.
359 *
360  CALL pclarfb( 'Right', 'Conjugate transpose', 'Forward',
361  $ 'Rowwise', m, n-1, jb, work( ipw ), iv, jv+1,
362  $ descw, work( iptp ), a, ia, ja+1, desca,
363  $ work( ipwk ) )
364 *
365  ELSE
366 *
367  CALL descset( descd, ia+mn-1, 1, desca( mb_ ), 1,
368  $ desca( rsrc_ ), mycol, desca( ctxt_ ),
369  $ desca( lld_ ) )
370  CALL descset( desce, 1, ja+mn-2, 1, desca( nb_ ), myrow,
371  $ desca( csrc_ ), desca( ctxt_ ), 1 )
372 *
373  DO 30 j = 0, mn-1
374  d1 = zero
375  e1 = zero
376  d2 = rzero
377  e2 = rzero
378  CALL pselget( ' ', ' ', d2, d, ia+j, 1, descd )
379  CALL pcelget( 'Rowwise', ' ', d1, a, ia+j, ja+j, desca )
380  IF( j.LT.(mn-1) ) THEN
381  CALL pselget( ' ', ' ', e2, e, 1, ja+j, desce )
382  CALL pcelget( 'Columnwise', ' ', e1, a, ia+j+1, ja+j,
383  $ desca )
384  END IF
385 *
386  IF( ( abs( d1 - cmplx( d2 ) ).GT.( abs( d2 )*addbnd ) ) .OR.
387  $ ( abs( e1 - cmplx( e2 ) ).GT.( abs( e2 )*addbnd ) ) )
388  $ info = info + 1
389  30 CONTINUE
390 *
391  DO 40 i = il, ia+nb-ioff, -nb
392  jb = min( ia+m-i, nb )
393  j = ja + i - ia
394  k = j - ja + 1
395 *
396 * Compute upper triangular matrix TQ from TAUQ.
397 *
398  CALL pclarft( 'Forward', 'Columnwise', m-k, jb, a, i+1, j,
399  $ desca, tauq, work( iptq ), work( ipwk ) )
400 *
401 * Copy Householder vectors into workspace.
402 *
403  CALL pclacpy( 'Lower', m-k, jb, a, i+1, j, desca,
404  $ work( ipv ), iv+1, jv, descv )
405  CALL pclaset( 'Upper', m-k, jb, zero, one, work( ipv ),
406  $ iv+1, jv, descv )
407 *
408 * Zero out the strict lower triangular part of A.
409 *
410  CALL pclaset( 'Lower', m-k-1, jb, zero, zero, a, i+2, j,
411  $ desca )
412 *
413 * Compute upper triangular matrix TP from TAUP.
414 *
415  CALL pclarft( 'Forward', 'Rowwise', n-k+1, jb, a, i, j,
416  $ desca, taup, work( iptp ), work( ipwk ) )
417 *
418 * Copy Householder vectors into workspace.
419 *
420  CALL pclacpy( 'Upper', jb, n-k+1, a, i, j, desca,
421  $ work( ipw ), iv, jv, descw )
422  CALL pclaset( 'Lower', jb, n-k+1, zero, one, work( ipw ),
423  $ iv, jv, descw )
424 *
425 * Zero out the strict+1 upper triangular part of A.
426 *
427  CALL pclaset( 'Upper', jb, n-k, zero, zero, a, i, j+1,
428  $ desca )
429 *
430 * Apply block Householder transformation from Left.
431 *
432  CALL pclarfb( 'Left', 'No transpose', 'Forward',
433  $ 'Columnwise', m-k, n-k+1, jb, work( ipv ),
434  $ iv+1, jv, descv, work( iptq ), a, i+1, j,
435  $ desca, work( ipwk ) )
436 *
437 * Apply block Householder transformation from Right.
438 *
439  CALL pclarfb( 'Right', 'Conjugate transpose', 'Forward',
440  $ 'Rowwise', m-k+1, n-k+1, jb, work( ipw ), iv,
441  $ jv, descw, work( iptp ), a, i, j, desca,
442  $ work( ipwk ) )
443 *
444  descv( m_ ) = descv( m_ ) + nb
445  descv( rsrc_ ) = mod( descv( rsrc_ ) + nprow - 1, nprow )
446  descv( csrc_ ) = mod( descv( csrc_ ) + npcol - 1, npcol )
447  descw( n_ ) = descw( n_ ) + nb
448  descw( rsrc_ ) = descv( rsrc_ )
449  descw( csrc_ ) = descv( csrc_ )
450 *
451  40 CONTINUE
452 *
453 * Handle first block separately
454 *
455  jb = min( m, nb - ioff )
456  iv = ioff + 1
457  jv = ioff + 1
458 *
459 * Compute upper triangular matrix TQ from TAUQ.
460 *
461  CALL pclarft( 'Forward', 'Columnwise', m-1, jb, a, ia+1, ja,
462  $ desca, tauq, work( iptq ), work( ipwk ) )
463 *
464 * Copy Householder vectors into workspace.
465 *
466  CALL pclacpy( 'Lower', m-1, jb, a, ia+1, ja, desca,
467  $ work( ipv ), iv+1, jv, descv )
468  CALL pclaset( 'Upper', m-1, jb, zero, one, work( ipv ), iv+1,
469  $ jv, descv )
470 *
471 * Zero out the strict lower triangular part of A.
472 *
473  CALL pclaset( 'Lower', m-2, jb, zero, zero, a, ia+2, ja,
474  $ desca )
475 *
476 * Compute upper triangular matrix TP from TAUP.
477 *
478  CALL pclarft( 'Forward', 'Rowwise', n, jb, a, ia, ja, desca,
479  $ taup, work( iptp ), work( ipwk ) )
480 *
481 * Copy Householder vectors into workspace.
482 *
483  CALL pclacpy( 'Upper', jb, n, a, ia, ja, desca, work( ipw ),
484  $ iv, jv, descw )
485  CALL pclaset( 'Lower', jb, n, zero, one, work( ipw ), iv, jv,
486  $ descw )
487 *
488 * Zero out the strict+1 upper triangular part of A.
489 *
490  CALL pclaset( 'Upper', jb, n-1, zero, zero, a, ia, ja+1,
491  $ desca )
492 *
493 * Apply block Householder transformation from left
494 *
495  CALL pclarfb( 'Left', 'No transpose', 'Forward', 'Columnwise',
496  $ m-1, n, jb, work( ipv ), iv+1, jv, descv,
497  $ work( iptq ), a, ia+1, ja, desca, work( ipwk ) )
498 *
499 * Apply block Householder transformation from right
500 *
501  CALL pclarfb( 'Right', 'Conjugate transpose', 'Forward',
502  $ 'Rowwise', m, n, jb, work( ipw ), iv, jv, descw,
503  $ work( iptp ), a, ia, ja, desca, work( ipwk ) )
504  END IF
505 *
506  CALL igsum2d( ictxt, 'All', ' ', 1, 1, info, 1, -1, 0 )
507 *
508  RETURN
509 *
510 * End of PCGEBDRV
511 *
512  END
cmplx
float cmplx[2]
Definition: pblas.h:132
max
#define max(A, B)
Definition: pcgemr.c:180
pcelget
subroutine pcelget(SCOPE, TOP, ALPHA, A, IA, JA, DESCA)
Definition: pcelget.f:2
infog2l
subroutine infog2l(GRINDX, GCINDX, DESC, NPROW, NPCOL, MYROW, MYCOL, LRINDX, LCINDX, RSRC, CSRC)
Definition: infog2l.f:3
pcgebdrv
subroutine pcgebdrv(M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP, WORK, INFO)
Definition: pcgebdrv.f:3
pclarfb
subroutine pclarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, IV, JV, DESCV, T, C, IC, JC, DESCC, WORK)
Definition: pclarfb.f:3
descset
subroutine descset(DESC, M, N, MB, NB, IRSRC, ICSRC, ICTXT, LLD)
Definition: descset.f:3
pclaset
subroutine pclaset(UPLO, M, N, ALPHA, BETA, A, IA, JA, DESCA)
Definition: pcblastst.f:7508
pclacpy
subroutine pclacpy(UPLO, M, N, A, IA, JA, DESCA, B, IB, JB, DESCB)
Definition: pclacpy.f:3
pselget
subroutine pselget(SCOPE, TOP, ALPHA, A, IA, JA, DESCA)
Definition: pselget.f:2
pclarft
subroutine pclarft(DIRECT, STOREV, N, K, V, IV, JV, DESCV, TAU, T, WORK)
Definition: pclarft.f:3
min
#define min(A, B)
Definition: pcgemr.c:181