SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pclarzb.f
Go to the documentation of this file.
1 SUBROUTINE pclarzb( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
2 $ IV, JV, DESCV, T, C, IC, JC, DESCC, WORK )
3*
4* -- ScaLAPACK auxiliary routine (version 2.0.2) --
5* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
6* May 1 2012
7*
8* .. Scalar Arguments ..
9 CHARACTER DIRECT, SIDE, STOREV, TRANS
10 INTEGER IC, IV, JC, JV, K, L, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCC( * ), DESCV( * )
14 COMPLEX C( * ), T( * ), V( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PCLARZB applies a complex block reflector Q or its conjugate
21* transpose Q**H to a complex M-by-N distributed matrix sub( C )
22* denoting C(IC:IC+M-1,JC:JC+N-1), from the left or the right.
23*
24* Q is a product of k elementary reflectors as returned by PCTZRZF.
25*
26* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
27*
28* Notes
29* =====
30*
31* Each global data object is described by an associated description
32* vector. This vector stores the information required to establish
33* the mapping between an object element and its corresponding process
34* and memory location.
35*
36* Let A be a generic term for any 2D block cyclicly distributed array.
37* Such a global array has an associated description vector DESCA.
38* In the following comments, the character _ should be read as
39* "of the global array".
40*
41* NOTATION STORED IN EXPLANATION
42* --------------- -------------- --------------------------------------
43* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
44* DTYPE_A = 1.
45* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46* the BLACS process grid A is distribu-
47* ted over. The context itself is glo-
48* bal, but the handle (the integer
49* value) may vary.
50* M_A (global) DESCA( M_ ) The number of rows in the global
51* array A.
52* N_A (global) DESCA( N_ ) The number of columns in the global
53* array A.
54* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
55* the rows of the array.
56* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
57* the columns of the array.
58* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59* row of the array A is distributed.
60* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61* first column of the array A is
62* distributed.
63* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
64* array. LLD_A >= MAX(1,LOCr(M_A)).
65*
66* Let K be the number of rows or columns of a distributed matrix,
67* and assume that its process grid has dimension p x q.
68* LOCr( K ) denotes the number of elements of K that a process
69* would receive if K were distributed over the p processes of its
70* process column.
71* Similarly, LOCc( K ) denotes the number of elements of K that a
72* process would receive if K were distributed over the q processes of
73* its process row.
74* The values of LOCr() and LOCc() may be determined via a call to the
75* ScaLAPACK tool function, NUMROC:
76* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78* An upper bound for these quantities may be computed by:
79* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81*
82* Arguments
83* =========
84*
85* SIDE (global input) CHARACTER
86* = 'L': apply Q or Q**H from the Left;
87* = 'R': apply Q or Q**H from the Right.
88*
89* TRANS (global input) CHARACTER
90* = 'N': No transpose, apply Q;
91* = 'C': Conjugate transpose, apply Q**H.
92*
93* DIRECT (global input) CHARACTER
94* Indicates how H is formed from a product of elementary
95* reflectors
96* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
97* = 'B': H = H(k) . . . H(2) H(1) (Backward)
98*
99* STOREV (global input) CHARACTER
100* Indicates how the vectors which define the elementary
101* reflectors are stored:
102* = 'C': Columnwise (not supported yet)
103* = 'R': Rowwise
104*
105* M (global input) INTEGER
106* The number of rows to be operated on i.e the number of rows
107* of the distributed submatrix sub( C ). M >= 0.
108*
109* N (global input) INTEGER
110* The number of columns to be operated on i.e the number of
111* columns of the distributed submatrix sub( C ). N >= 0.
112*
113* K (global input) INTEGER
114* The order of the matrix T (= the number of elementary
115* reflectors whose product defines the block reflector).
116*
117* L (global input) INTEGER
118* The columns of the distributed submatrix sub( A ) containing
119* the meaningful part of the Householder reflectors.
120* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
121*
122* V (local input) COMPLEX pointer into the local memory
123* to an array of dimension (LLD_V, LOCc(JV+M-1)) if SIDE = 'L',
124* (LLD_V, LOCc(JV+N-1)) if SIDE = 'R'. It contains the local
125* pieces of the distributed vectors V representing the
126* Householder transformation as returned by PCTZRZF.
127* LLD_V >= LOCr(IV+K-1).
128*
129* IV (global input) INTEGER
130* The row index in the global array V indicating the first
131* row of sub( V ).
132*
133* JV (global input) INTEGER
134* The column index in the global array V indicating the
135* first column of sub( V ).
136*
137* DESCV (global and local input) INTEGER array of dimension DLEN_.
138* The array descriptor for the distributed matrix V.
139*
140* T (local input) COMPLEX array, dimension MB_V by MB_V
141* The lower triangular matrix T in the representation of the
142* block reflector.
143*
144* C (local input/local output) COMPLEX pointer into the
145* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
146* On entry, the M-by-N distributed matrix sub( C ). On exit,
147* sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or
148* sub( C )*Q or sub( C )*Q'.
149*
150* IC (global input) INTEGER
151* The row index in the global array C indicating the first
152* row of sub( C ).
153*
154* JC (global input) INTEGER
155* The column index in the global array C indicating the
156* first column of sub( C ).
157*
158* DESCC (global and local input) INTEGER array of dimension DLEN_.
159* The array descriptor for the distributed matrix C.
160*
161* WORK (local workspace) COMPLEX array, dimension (LWORK)
162* If STOREV = 'C',
163* if SIDE = 'L',
164* LWORK >= ( NqC0 + MpC0 ) * K
165* else if SIDE = 'R',
166* LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC,
167* NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ),
168* MpC0 ) ) * K
169* end if
170* else if STOREV = 'R',
171* if SIDE = 'L',
172* LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC,
173* MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ),
174* NqC0 ) ) * K
175* else if SIDE = 'R',
176* LWORK >= ( MpC0 + NqC0 ) * K
177* end if
178* end if
179*
180* where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
181*
182* IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ),
183* IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ),
184* IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ),
185* MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ),
186* NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
187*
188* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
189* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
190* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
191* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
192* NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ),
193* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
194*
195* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
196* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
197* the subroutine BLACS_GRIDINFO.
198*
199* Alignment requirements
200* ======================
201*
202* The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1)
203* must verify some alignment properties, namely the following
204* expressions should be true:
205*
206* If STOREV = 'Columnwise'
207* If SIDE = 'Left',
208* ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW )
209* If SIDE = 'Right',
210* ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC )
211* else if STOREV = 'Rowwise'
212* If SIDE = 'Left',
213* ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC )
214* If SIDE = 'Right',
215* ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL )
216* end if
217*
218* =====================================================================
219*
220* .. Parameters ..
221 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
222 $ lld_, mb_, m_, nb_, n_, rsrc_
223 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
224 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
225 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
226 COMPLEX ONE, ZERO
227 parameter( one = ( 1.0e+0, 0.0e+0 ),
228 $ zero = ( 0.0e+0, 0.0e+0 ) )
229* ..
230* .. Local Scalars ..
231 LOGICAL LEFT
232 CHARACTER COLBTOP, TRANST
233 INTEGER ICCOL1, ICCOL2, ICOFFC1, ICOFFC2, ICOFFV,
234 $ icrow1, icrow2, ictxt, iibeg, iic1, iic2,
235 $ iiend, iinxt, iiv, ileft, info, ioffc2, ioffv,
236 $ ipt, ipv, ipw, iroffc1, iroffc2, itop, ivcol,
237 $ ivrow, j, jjbeg, jjend, jjnxt, jjc1, jjc2, jjv,
238 $ ldc, ldv, lv, lw, mbc, mbv, mpc1, mpc2, mpc20,
239 $ mqv, mqv0, mycol, mydist, myrow, nbc, nbv,
240 $ npcol, nprow, nqc1, nqc2, nqcall, nqv
241* ..
242* .. External Subroutines ..
243 EXTERNAL blacs_abort, blacs_gridinfo, cgebr2d,
244 $ cgebs2d, cgemm, cgsum2d, clacgv,
245 $ clamov, claset, ctrbr2d, ctrbs2d,
246 $ ctrmm, infog2l, pbcmatadd, pbctran,
247 $ pb_topget, pxerbla
248* ..
249* .. Intrinsic Functions ..
250 INTRINSIC max, min, mod
251* ..
252* .. External Functions ..
253 LOGICAL LSAME
254 INTEGER ICEIL, NUMROC
255 EXTERNAL iceil, lsame, numroc
256* ..
257* .. Executable Statements ..
258*
259* Quick return if possible
260*
261 IF( m.LE.0 .OR. n.LE.0 .OR. k.LE.0 )
262 $ RETURN
263*
264* Get grid parameters
265*
266 ictxt = descc( ctxt_ )
267 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
268*
269* Check for currently supported options
270*
271 info = 0
272 IF( .NOT.lsame( direct, 'B' ) ) THEN
273 info = -3
274 ELSE IF( .NOT.lsame( storev, 'R' ) ) THEN
275 info = -4
276 END IF
277 IF( info.NE.0 ) THEN
278 CALL pxerbla( ictxt, 'PCLARZB', -info )
279 CALL blacs_abort( ictxt, 1 )
280 RETURN
281 END IF
282*
283 left = lsame( side, 'L' )
284 IF( lsame( trans, 'N' ) ) THEN
285 transt = 'C'
286 ELSE
287 transt = 'N'
288 END IF
289*
290 CALL infog2l( iv, jv, descv, nprow, npcol, myrow, mycol, iiv, jjv,
291 $ ivrow, ivcol )
292 mbv = descv( mb_ )
293 nbv = descv( nb_ )
294 icoffv = mod( jv-1, nbv )
295 nqv = numroc( l+icoffv, nbv, mycol, ivcol, npcol )
296 IF( mycol.EQ.ivcol )
297 $ nqv = nqv - icoffv
298 ldv = descv( lld_ )
299 iiv = min( iiv, ldv )
300 jjv = min( jjv, max( 1, numroc( descv( n_ ), nbv, mycol,
301 $ descv( csrc_ ), npcol ) ) )
302 ioffv = iiv + ( jjv-1 ) * ldv
303 mbc = descc( mb_ )
304 nbc = descc( nb_ )
305 nqcall = numroc( descc( n_ ), nbc, mycol, descc( csrc_ ), npcol )
306 CALL infog2l( ic, jc, descc, nprow, npcol, myrow, mycol, iic1,
307 $ jjc1, icrow1, iccol1 )
308 ldc = descc( lld_ )
309 iic1 = min( iic1, ldc )
310 jjc1 = min( jjc1, max( 1, nqcall ) )
311*
312 IF( left ) THEN
313 iroffc1 = mod( ic-1, mbc )
314 mpc1 = numroc( k+iroffc1, mbc, myrow, icrow1, nprow )
315 IF( myrow.EQ.icrow1 )
316 $ mpc1 = mpc1 - iroffc1
317 icoffc1 = mod( jc-1, nbc )
318 nqc1 = numroc( n+icoffc1, nbc, mycol, iccol1, npcol )
319 IF( mycol.EQ.iccol1 )
320 $ nqc1 = nqc1 - icoffc1
321 CALL infog2l( ic+m-l, jc, descc, nprow, npcol, myrow, mycol,
322 $ iic2, jjc2, icrow2, iccol2 )
323 iroffc2 = mod( ic+m-l-1, mbc )
324 mpc2 = numroc( l+iroffc2, mbc, myrow, icrow2, nprow )
325 IF( myrow.EQ.icrow2 )
326 $ mpc2 = mpc2 - iroffc2
327 icoffc2 = icoffc1
328 nqc2 = nqc1
329 ELSE
330 iroffc1 = mod( ic-1, mbc )
331 mpc1 = numroc( m+iroffc1, mbc, myrow, icrow1, nprow )
332 IF( myrow.EQ.icrow1 )
333 $ mpc1 = mpc1 - iroffc1
334 icoffc1 = mod( jc-1, nbc )
335 nqc1 = numroc( k+icoffc1, nbc, mycol, iccol1, npcol )
336 IF( mycol.EQ.iccol1 )
337 $ nqc1 = nqc1 - icoffc1
338 CALL infog2l( ic, jc+n-l, descc, nprow, npcol, myrow, mycol,
339 $ iic2, jjc2, icrow2, iccol2 )
340 iroffc2 = iroffc1
341 mpc2 = mpc1
342 icoffc2 = mod( jc+n-l-1, nbc )
343 nqc2 = numroc( l+icoffc2, nbc, mycol, iccol2, npcol )
344 IF( mycol.EQ.iccol2 )
345 $ nqc2 = nqc2 - icoffc2
346 END IF
347 iic2 = min( iic2, ldc )
348 jjc2 = min( jjc2, nqcall )
349 ioffc2 = iic2 + ( jjc2-1 ) * ldc
350*
351 IF( lsame( side, 'L' ) ) THEN
352*
353* Form Q*sub( C ) or Q'*sub( C )
354*
355* IROFFC2 = ICOFFV is required by the current transposition
356* routine PBCTRAN
357*
358 mqv0 = numroc( m+icoffv, nbv, mycol, ivcol, npcol )
359 IF( mycol.EQ.ivcol ) THEN
360 mqv = mqv0 - icoffv
361 ELSE
362 mqv = mqv0
363 END IF
364 IF( myrow.EQ.icrow2 ) THEN
365 mpc20 = mpc2 + iroffc2
366 ELSE
367 mpc20 = mpc2
368 END IF
369*
370* Locally V( IOFFV ) is K x MQV, C( IOFFC2 ) is MPC2 x NQC2
371* WORK( IPV ) is MPC20 x K = [ . V( IOFFV ) ]'
372* WORK( IPW ) is K x MQV0 = [ . V( IOFFV ) ]
373* WORK( IPT ) is the workspace for PBCTRAN
374*
375 ipv = 1
376 ipw = ipv + mpc20 * k
377 ipt = ipw + k * mqv0
378 lv = max( 1, mpc20 )
379 lw = max( 1, k )
380*
381 IF( myrow.EQ.ivrow ) THEN
382 IF( mycol.EQ.ivcol ) THEN
383 CALL clamov( 'All', k, mqv, v( ioffv ), ldv,
384 $ work( ipw+icoffv*lw ), lw )
385 ELSE
386 CALL clamov( 'All', k, mqv, v( ioffv ), ldv,
387 $ work( ipw ), lw )
388 END IF
389 END IF
390*
391* WORK( IPV ) = WORK( IPW )' (replicated) is MPC20 x K
392*
393 CALL pbctran( ictxt, 'Rowwise', 'Conjugate transpose', k,
394 $ m+icoffv, descv( nb_ ), work( ipw ), lw, zero,
395 $ work( ipv ), lv, ivrow, ivcol, icrow2, -1,
396 $ work( ipt ) )
397*
398* WORK( IPV ) = ( . V )' -> WORK( IPV ) = V' is MPC2 x K
399*
400 IF( myrow.EQ.icrow2 )
401 $ ipv = ipv + iroffc2
402*
403* WORK( IPW ) becomes NQC2 x K = C( IOFFC2 )' * V'
404* WORK( IPW ) = C( IOFFC2 )' * V' (NQC2 x MPC2 x K) -> NQC2 x K
405*
406 lw = max( 1, nqc2 )
407*
408 IF( mpc2.GT.0 ) THEN
409 CALL cgemm( 'Transpose', 'No transpose', nqc2, k, mpc2,
410 $ one, c( ioffc2 ), ldc, work( ipv ), lv, zero,
411 $ work( ipw ), lw )
412 ELSE
413 CALL claset( 'All', nqc2, k, zero, zero, work( ipw ), lw )
414 END IF
415*
416* WORK( IPW ) = WORK( IPW ) + C1 ( NQC1 = NQC2 )
417*
418 IF( mpc1.GT.0 ) THEN
419 mydist = mod( myrow-icrow1+nprow, nprow )
420 itop = max( 0, mydist * mbc - iroffc1 )
421 iibeg = iic1
422 iiend = iic1 + mpc1 - 1
423 iinxt = min( iceil( iibeg, mbc ) * mbc, iiend )
424*
425 10 CONTINUE
426 IF( iibeg.LE.iinxt ) THEN
427 CALL pbcmatadd( ictxt, 'Transpose', nqc2, iinxt-iibeg+1,
428 $ one, c( iibeg+(jjc1-1)*ldc ), ldc, one,
429 $ work( ipw+itop ), lw )
430 mydist = mydist + nprow
431 itop = mydist * mbc - iroffc1
432 iibeg = iinxt +1
433 iinxt = min( iinxt+mbc, iiend )
434 GO TO 10
435 END IF
436 END IF
437*
438 CALL cgsum2d( ictxt, 'Columnwise', ' ', nqc2, k, work( ipw ),
439 $ lw, ivrow, mycol )
440*
441* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
442*
443 IF( myrow.EQ.ivrow ) THEN
444 IF( mycol.EQ.ivcol ) THEN
445*
446* Broadcast the block reflector to the other columns.
447*
448 CALL ctrbs2d( ictxt, 'Rowwise', ' ', 'Lower', 'Non unit',
449 $ k, k, t, mbv )
450 ELSE
451 CALL ctrbr2d( ictxt, 'Rowwise', ' ', 'Lower', 'Non unit',
452 $ k, k, t, mbv, myrow, ivcol )
453 END IF
454 CALL ctrmm( 'Right', 'Lower', transt, 'Non unit', nqc2, k,
455 $ one, t, mbv, work( ipw ), lw )
456*
457 CALL cgebs2d( ictxt, 'Columnwise', ' ', nqc2, k,
458 $ work( ipw ), lw )
459 ELSE
460 CALL cgebr2d( ictxt, 'Columnwise', ' ', nqc2, k,
461 $ work( ipw ), lw, ivrow, mycol )
462 END IF
463*
464* C1 = C1 - WORK( IPW )
465*
466 IF( mpc1.GT.0 ) THEN
467 mydist = mod( myrow-icrow1+nprow, nprow )
468 itop = max( 0, mydist * mbc - iroffc1 )
469 iibeg = iic1
470 iiend = iic1 + mpc1 - 1
471 iinxt = min( iceil( iibeg, mbc ) * mbc, iiend )
472*
473 20 CONTINUE
474 IF( iibeg.LE.iinxt ) THEN
475 CALL pbcmatadd( ictxt, 'Transpose', iinxt-iibeg+1, nqc2,
476 $ -one, work( ipw+itop ), lw, one,
477 $ c( iibeg+(jjc1-1)*ldc ), ldc )
478 mydist = mydist + nprow
479 itop = mydist * mbc - iroffc1
480 iibeg = iinxt +1
481 iinxt = min( iinxt+mbc, iiend )
482 GO TO 20
483 END IF
484 END IF
485*
486* C2 C2 - V' * W'
487* C( IOFFC2 ) = C( IOFFC2 ) - WORK( IPV ) * WORK( IPW )'
488* MPC2 x NQC2 MPC2 x K K x NQC2
489*
490 DO 30 j = 1, k
491 CALL clacgv( mpc2, work( ipv+(j-1)*lv ), 1 )
492 30 CONTINUE
493 CALL cgemm( 'No transpose', 'Transpose', mpc2, nqc2, k, -one,
494 $ work( ipv ), lv, work( ipw ), lw, one,
495 $ c( ioffc2 ), ldc )
496*
497 ELSE
498*
499* Form sub( C ) * Q or sub( C ) * Q'
500*
501* Locally V( IOFFV ) is K x NQV, C( IOFFC2 ) is MPC2 x NQC2
502* WORK( IPV ) is K x NQV = V( IOFFV ), NQV = NQC2
503* WORK( IPW ) is MPC2 x K = C( IOFFC2 ) * V( IOFFV )'
504*
505 ipv = 1
506 ipw = ipv + k * nqc2
507 lv = max( 1, k )
508 lw = max( 1, mpc2 )
509*
510* Broadcast V to the other process rows.
511*
512 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
513 IF( myrow.EQ.ivrow ) THEN
514 CALL cgebs2d( ictxt, 'Columnwise', colbtop, k, nqc2,
515 $ v( ioffv ), ldv )
516 IF( mycol.EQ.ivcol )
517 $ CALL ctrbs2d( ictxt, 'Columnwise', colbtop, 'Lower',
518 $ 'Non unit', k, k, t, mbv )
519 CALL clamov( 'All', k, nqc2, v( ioffv ), ldv, work( ipv ),
520 $ lv )
521 ELSE
522 CALL cgebr2d( ictxt, 'Columnwise', colbtop, k, nqc2,
523 $ work( ipv ), lv, ivrow, mycol )
524 IF( mycol.EQ.ivcol )
525 $ CALL ctrbr2d( ictxt, 'Columnwise', colbtop, 'Lower',
526 $ 'Non unit', k, k, t, mbv, ivrow, mycol )
527 END IF
528*
529* WORK( IPV ) is K x NQC2 = V = V( IOFFV )
530* WORK( IPW ) = C( IOFFC2 ) * V' (MPC2 x NQC2 x K) -> MPC2 x K
531*
532 IF( nqc2.GT.0 ) THEN
533 CALL cgemm( 'No Transpose', 'Transpose', mpc2, k, nqc2,
534 $ one, c( ioffc2 ), ldc, work( ipv ), lv, zero,
535 $ work( ipw ), lw )
536 ELSE
537 CALL claset( 'All', mpc2, k, zero, zero, work( ipw ), lw )
538 END IF
539*
540* WORK( IPW ) = WORK( IPW ) + C1 ( MPC1 = MPC2 )
541*
542 IF( nqc1.GT.0 ) THEN
543 mydist = mod( mycol-iccol1+npcol, npcol )
544 ileft = max( 0, mydist * nbc - icoffc1 )
545 jjbeg = jjc1
546 jjend = jjc1 + nqc1 - 1
547 jjnxt = min( iceil( jjbeg, nbc ) * nbc, jjend )
548*
549 40 CONTINUE
550 IF( jjbeg.LE.jjnxt ) THEN
551 CALL pbcmatadd( ictxt, 'No transpose', mpc2,
552 $ jjnxt-jjbeg+1, one,
553 $ c( iic1+(jjbeg-1)*ldc ), ldc, one,
554 $ work( ipw+ileft*lw ), lw )
555 mydist = mydist + npcol
556 ileft = mydist * nbc - icoffc1
557 jjbeg = jjnxt +1
558 jjnxt = min( jjnxt+nbc, jjend )
559 GO TO 40
560 END IF
561 END IF
562*
563 CALL cgsum2d( ictxt, 'Rowwise', ' ', mpc2, k, work( ipw ),
564 $ lw, myrow, ivcol )
565*
566* WORK( IPW ) = WORK( IPW ) * T' or WORK( IPW ) * T
567*
568 IF( mycol.EQ.ivcol ) THEN
569 DO 50 j = 1, k
570 CALL clacgv( k-j+1, t( j+(j-1)*mbv ), 1 )
571 50 CONTINUE
572 CALL ctrmm( 'Right', 'Lower', trans, 'Non unit', mpc2, k,
573 $ one, t, mbv, work( ipw ), lw )
574 CALL cgebs2d( ictxt, 'Rowwise', ' ', mpc2, k, work( ipw ),
575 $ lw )
576 DO 60 j = 1, k
577 CALL clacgv( k-j+1, t( j+(j-1)*mbv ), 1 )
578 60 CONTINUE
579 ELSE
580 CALL cgebr2d( ictxt, 'Rowwise', ' ', mpc2, k, work( ipw ),
581 $ lw, myrow, ivcol )
582 END IF
583*
584* C1 = C1 - WORK( IPW )
585*
586 IF( nqc1.GT.0 ) THEN
587 mydist = mod( mycol-iccol1+npcol, npcol )
588 ileft = max( 0, mydist * nbc - icoffc1 )
589 jjbeg = jjc1
590 jjend = jjc1 + nqc1 - 1
591 jjnxt = min( iceil( jjbeg, nbc ) * nbc, jjend )
592*
593 70 CONTINUE
594 IF( jjbeg.LE.jjnxt ) THEN
595 CALL pbcmatadd( ictxt, 'No transpose', mpc2,
596 $ jjnxt-jjbeg+1, -one,
597 $ work( ipw+ileft*lw ), lw, one,
598 $ c( iic1+(jjbeg-1)*ldc ), ldc )
599 mydist = mydist + npcol
600 ileft = mydist * nbc - icoffc1
601 jjbeg = jjnxt +1
602 jjnxt = min( jjnxt+nbc, jjend )
603 GO TO 70
604 END IF
605 END IF
606*
607* C2 C2 - W * conjg( V )
608* C( IOFFC ) = C( IOFFC ) - WORK( IPW ) * conjg( WORK( IPV ) )
609* MPC2 x NQC2 MPC2 x K K x NQC2
610*
611 DO 80 j = 1, nqc2
612 CALL clacgv( k, work( ipv+(j-1)*lv ), 1 )
613 80 CONTINUE
614 IF( ioffc2.GT.0 )
615 $ CALL cgemm( 'No transpose', 'No transpose', mpc2, nqc2, k,
616 $ -one, work( ipw ), lw, work( ipv ), lv, one,
617 $ c( ioffc2 ), ldc )
618*
619 END IF
620*
621 RETURN
622*
623* End of PCLARZB
624*
625 END
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pbcmatadd(icontxt, mode, m, n, alpha, a, lda, beta, b, ldb)
Definition pbcmatadd.f:3
subroutine pbctran(icontxt, adist, trans, m, n, nb, a, lda, beta, c, ldc, iarow, iacol, icrow, iccol, work)
Definition pbctran.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pclarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pclarzb.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2