SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pslared1d.f
Go to the documentation of this file.
1 SUBROUTINE pslared1d( N, IA, JA, DESC, BYCOL, BYALL, WORK, LWORK )
2*
3* -- ScaLAPACK routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* December 12, 2005
7*
8* .. Scalar Arguments ..
9 INTEGER IA, JA, LWORK, N
10* ..
11* .. Array Arguments ..
12 INTEGER DESC( * )
13 REAL BYALL( * ), BYCOL( * ), WORK( LWORK )
14* ..
15*
16* Purpose
17* =======
18*
19* PSLARED1D redistributes a 1D array
20*
21* It assumes that the input array, BYCOL, is distributed across
22* rows and that all process columns contain the same copy of
23* BYCOL. The output array, BYALL, will be identical on all processes
24* and will contain the entire array.
25*
26* Notes
27* =====
28*
29* Each global data object is described by an associated description
30* vector. This vector stores the information required to establish
31* the mapping between an object element and its corresponding process
32* and memory location.
33*
34* Let A be a generic term for any 2D block cyclicly distributed array.
35* Such a global array has an associated description vector DESCA.
36* In the following comments, the character _ should be read as
37* "of the global array".
38*
39* NOTATION STORED IN EXPLANATION
40* --------------- -------------- --------------------------------------
41* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
42* DTYPE_A = 1.
43* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
44* the BLACS process grid A is distribu-
45* ted over. The context itself is glo-
46* bal, but the handle (the integer
47* value) may vary.
48* M_A (global) DESCA( M_ ) The number of rows in the global
49* array A.
50* N_A (global) DESCA( N_ ) The number of columns in the global
51* array A.
52* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
53* the rows of the array.
54* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
55* the columns of the array.
56* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
57* row of the array A is distributed.
58* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
59* first column of the array A is
60* distributed.
61* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
62* array. LLD_A >= MAX(1,LOCr(M_A)).
63*
64* Let K be the number of rows or columns of a distributed matrix,
65* and assume that its process grid has dimension p x q.
66* LOCr( K ) denotes the number of elements of K that a process
67* would receive if K were distributed over the p processes of its
68* process column.
69* Similarly, LOCc( K ) denotes the number of elements of K that a
70* process would receive if K were distributed over the q processes of
71* its process row.
72* The values of LOCr() and LOCc() may be determined via a call to the
73* ScaLAPACK tool function, NUMROC:
74* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
75* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
76* An upper bound for these quantities may be computed by:
77* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
78* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
79*
80* Arguments
81* =========
82*
83* NP = Number of local rows in BYCOL()
84*
85* N (global input) INTEGER
86* The number of elements to be redistributed. N >= 0.
87*
88* IA (global input) INTEGER
89* IA must be equal to 1
90*
91* JA (global input) INTEGER
92* JA must be equal to 1
93*
94* DESC (global/local input) INTEGER Array of dimension DLEN_
95* A 2D array descriptor, which describes BYCOL
96*
97* BYCOL (local input) distributed block cyclic REAL array
98* global dimension (N), local dimension (NP)
99* BYCOL is distributed across the process rows
100* All process columns are assumed to contain the same value
101*
102* BYALL (global output) REAL global dimension( N )
103* local dimension (N)
104* BYALL is exactly duplicated on all processes
105* It contains the same values as BYCOL, but it is replicated
106* across all processes rather than being distributed
107*
108* BYALL(i) = BYCOL( NUMROC(i,DESC( NB_ ),MYROW,0,NPROW ) on the procs
109* whose MYROW == mod((i-1)/DESC( NB_ ),NPROW)
110*
111* WORK (local workspace) REAL dimension (LWORK)
112* Used to hold the buffers sent from one process to another
113*
114* LWORK (local input) INTEGER size of WORK array
115* LWORK >= NUMROC(N, DESC( NB_ ), 0, 0, NPCOL)
116*
117*
118* .. Parameters ..
119 INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
120 $ MB_, NB_, RSRC_, CSRC_, LLD_
121 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
122 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
123 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
124* ..
125* .. Local Scalars ..
126 INTEGER ALLI, BUFLEN, I, II, MYCOL, MYROW, NB, NPCOL,
127 $ NPROW, PCOL
128* ..
129* .. External Functions ..
130*
131 INTEGER NUMROC
132 EXTERNAL numroc
133* ..
134* .. External Subroutines ..
135*
136 EXTERNAL blacs_gridinfo, scopy, sgebr2d, sgebs2d
137* ..
138* .. Intrinsic Functions ..
139 INTRINSIC min
140* ..
141* .. Executable Statements ..
142* This is just to keep ftnchek happy
143 IF( block_cyclic_2d*csrc_*ctxt_*dlen_*dtype_*lld_*mb_*m_*nb_*n_*
144 $ rsrc_.LT.0 )RETURN
145*
146 CALL blacs_gridinfo( desc( ctxt_ ), nprow, npcol, myrow, mycol )
147 nb = desc( mb_ )
148*
149 DO 30 pcol = 0, npcol - 1
150 buflen = numroc( n, nb, pcol, 0, npcol )
151 IF( mycol.EQ.pcol ) THEN
152 CALL scopy( buflen, bycol, 1, work, 1 )
153 CALL sgebs2d( desc( ctxt_ ), 'R', ' ', 1, buflen, work, 1 )
154 ELSE
155 CALL sgebr2d( desc( ctxt_ ), 'R', ' ', 1, buflen, work, 1,
156 $ myrow, pcol )
157 END IF
158*
159 alli = pcol*nb
160 DO 20 ii = 1, buflen, nb
161 DO 10 i = 1, min( nb, buflen-ii+1 )
162 byall( alli+i ) = work( ii-1+i )
163 10 CONTINUE
164 alli = alli + nb*npcol
165 20 CONTINUE
166 30 CONTINUE
167*
168 RETURN
169*
170* End of PSLARED1D
171*
172 END
#define min(A, B)
Definition pcgemr.c:181
subroutine pslared1d(n, ia, ja, desc, bycol, byall, work, lwork)
Definition pslared1d.f:2