SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
All Classes Files Functions Variables Typedefs Macros
pielget.f
Go to the documentation of this file.
1 SUBROUTINE pielget( SCOPE, TOP, ALPHA, A, IA, JA, DESCA )
2*
3* -- ScaLAPACK tools routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 1, 1997
7*
8* .. Scalar Arguments ..
9 CHARACTER*1 SCOPE, TOP
10 INTEGER ALPHA, IA, JA
11* ..
12* .. Array arguments ..
13 INTEGER A( * ), DESCA( * )
14* ..
15*
16* Purpose
17* =======
18*
19* PIELGET sets alpha to the distributed matrix entry A( IA, JA ).
20* The value of alpha is set according to the scope.
21*
22* Notes
23* =====
24*
25* Each global data object is described by an associated description
26* vector. This vector stores the information required to establish
27* the mapping between an object element and its corresponding process
28* and memory location.
29*
30* Let A be a generic term for any 2D block cyclicly distributed array.
31* Such a global array has an associated description vector DESCA.
32* In the following comments, the character _ should be read as
33* "of the global array".
34*
35* NOTATION STORED IN EXPLANATION
36* --------------- -------------- --------------------------------------
37* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
38* DTYPE_A = 1.
39* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
40* the BLACS process grid A is distribu-
41* ted over. The context itself is glo-
42* bal, but the handle (the integer
43* value) may vary.
44* M_A (global) DESCA( M_ ) The number of rows in the global
45* array A.
46* N_A (global) DESCA( N_ ) The number of columns in the global
47* array A.
48* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
49* the rows of the array.
50* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
51* the columns of the array.
52* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
53* row of the array A is distributed.
54* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
55* first column of the array A is
56* distributed.
57* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
58* array. LLD_A >= MAX(1,LOCr(M_A)).
59*
60* Let K be the number of rows or columns of a distributed matrix,
61* and assume that its process grid has dimension p x q.
62* LOCr( K ) denotes the number of elements of K that a process
63* would receive if K were distributed over the p processes of its
64* process column.
65* Similarly, LOCc( K ) denotes the number of elements of K that a
66* process would receive if K were distributed over the q processes of
67* its process row.
68* The values of LOCr() and LOCc() may be determined via a call to the
69* ScaLAPACK tool function, NUMROC:
70* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
71* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
72* An upper bound for these quantities may be computed by:
73* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
74* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
75*
76* Arguments
77* =========
78*
79* SCOPE (global input) CHARACTER*1
80* The BLACS scope in which alpha is updated.
81* If SCOPE = 'R', alpha is updated only in the process row
82* containing A( IA, JA ),
83* If SCOPE = 'C', alpha is updated only in the process column
84* containing A( IA, JA ),
85* If SCOPE = 'A', alpha is updated in all the processes of the
86* grid,
87* otherwise alpha is updated only in the process containing
88* A( IA, JA ).
89*
90* TOP (global input) CHARACTER*1
91* The topology to be used if broadcast is needed.
92*
93* ALPHA (global output) @(typec), the scalar alpha.
94*
95* A (local input) @(typec) pointer into the local memory
96* to an array of dimension (LLD_A,*) containing the local
97* pieces of the distributed matrix A.
98*
99* IA (global input) INTEGER
100* The row index in the global array A indicating the first
101* row of sub( A ).
102*
103* JA (global input) INTEGER
104* The column index in the global array A indicating the
105* first column of sub( A ).
106*
107* DESCA (global and local input) INTEGER array of dimension DLEN_.
108* The array descriptor for the distributed matrix A.
109*
110* =====================================================================
111*
112* .. Parameters ..
113 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
114 $ LLD_, MB_, M_, NB_, N_, RSRC_
115 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
116 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
117 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
118 INTEGER ZERO
119 parameter( zero = 0 )
120* ..
121* .. Local Scalars ..
122 INTEGER IACOL, IAROW, ICTXT, IIA, IOFFA, JJA, MYCOL,
123 $ MYROW, NPCOL, NPROW
124* ..
125* .. External Subroutines ..
126 EXTERNAL blacs_gridinfo, igebr2d, igebs2d, infog2l
127* ..
128* .. External Functions ..
129 LOGICAL LSAME
130 EXTERNAL lsame
131* ..
132* .. Executable Statements ..
133*
134* Get grid parameters.
135*
136 ictxt = desca( ctxt_ )
137 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
138*
139 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, iia, jja,
140 $ iarow, iacol )
141*
142 alpha = zero
143*
144 IF( lsame( scope, 'R' ) ) THEN
145 IF( myrow.EQ.iarow ) THEN
146 IF( mycol.EQ.iacol ) THEN
147 ioffa = iia+(jja-1)*desca( lld_ )
148 CALL igebs2d( ictxt, scope, top, 1, 1, a( ioffa ), 1 )
149 alpha = a( ioffa )
150 ELSE
151 CALL igebr2d( ictxt, scope, top, 1, 1, alpha, 1,
152 $ iarow, iacol )
153 END IF
154 END IF
155 ELSE IF( lsame( scope, 'C' ) ) THEN
156 IF( mycol.EQ.iacol ) THEN
157 IF( myrow.EQ.iarow ) THEN
158 ioffa = iia+(jja-1)*desca( lld_ )
159 CALL igebs2d( ictxt, scope, top, 1, 1, a( ioffa ), 1 )
160 alpha = a( ioffa )
161 ELSE
162 CALL igebr2d( ictxt, scope, top, 1, 1, alpha, 1,
163 $ iarow, iacol )
164 END IF
165 END IF
166 ELSE IF( lsame( scope, 'A' ) ) THEN
167 IF( ( myrow.EQ.iarow ).AND.( mycol.EQ.iacol ) ) THEN
168 ioffa = iia+(jja-1)*desca( lld_ )
169 CALL igebs2d( ictxt, scope, top, 1, 1, a( ioffa ), 1 )
170 alpha = a( ioffa )
171 ELSE
172 CALL igebr2d( ictxt, scope, top, 1, 1, alpha, 1,
173 $ iarow, iacol )
174 END IF
175 ELSE
176 IF( myrow.EQ.iarow .AND. mycol.EQ.iacol )
177 $ alpha = a( iia+(jja-1)*desca( lld_ ) )
178 END IF
179*
180 RETURN
181*
182* End of PIELGET
183*
184 END
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pielget(scope, top, alpha, a, ia, ja, desca)
Definition pielget.f:2