SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdsytdrv.f
Go to the documentation of this file.
1 SUBROUTINE pdsytdrv( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 CHARACTER UPLO
11 INTEGER IA, INFO, JA, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * )
15 DOUBLE PRECISION A( * ), D( * ), E( * ), TAU( * ), WORK( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PDSYTDRV computes sub( A ) = A(IA:IA+N-1,JA:JA+N-1) from Q, the
22* symmetric tridiagonal matrix T (or D and E), and TAU, which were
23* computed by PDSYTRD: sub( A ) := Q * T * Q'.
24*
25* Notes
26* =====
27*
28* Each global data object is described by an associated description
29* vector. This vector stores the information required to establish
30* the mapping between an object element and its corresponding process
31* and memory location.
32*
33* Let A be a generic term for any 2D block cyclicly distributed array.
34* Such a global array has an associated description vector DESCA.
35* In the following comments, the character _ should be read as
36* "of the global array".
37*
38* NOTATION STORED IN EXPLANATION
39* --------------- -------------- --------------------------------------
40* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
41* DTYPE_A = 1.
42* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
43* the BLACS process grid A is distribu-
44* ted over. The context itself is glo-
45* bal, but the handle (the integer
46* value) may vary.
47* M_A (global) DESCA( M_ ) The number of rows in the global
48* array A.
49* N_A (global) DESCA( N_ ) The number of columns in the global
50* array A.
51* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
52* the rows of the array.
53* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
54* the columns of the array.
55* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
56* row of the array A is distributed.
57* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
58* first column of the array A is
59* distributed.
60* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
61* array. LLD_A >= MAX(1,LOCr(M_A)).
62*
63* Let K be the number of rows or columns of a distributed matrix,
64* and assume that its process grid has dimension p x q.
65* LOCr( K ) denotes the number of elements of K that a process
66* would receive if K were distributed over the p processes of its
67* process column.
68* Similarly, LOCc( K ) denotes the number of elements of K that a
69* process would receive if K were distributed over the q processes of
70* its process row.
71* The values of LOCr() and LOCc() may be determined via a call to the
72* ScaLAPACK tool function, NUMROC:
73* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
74* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
75* An upper bound for these quantities may be computed by:
76* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
77* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
78*
79* Arguments
80* =========
81*
82* UPLO (global input) CHARACTER
83* Specifies whether the upper or lower triangular part of the
84* symmetric matrix sub( A ) is stored:
85* = 'U': Upper triangular
86* = 'L': Lower triangular
87*
88* N (global input) INTEGER
89* The number of rows and columns to be operated on, i.e. the
90* order of the distributed submatrix sub( A ). N >= 0.
91*
92* A (local input/local output) DOUBLE PRECISION pointer into the
93* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
94* This array contains the local pieces of sub( A ). On entry,
95* if UPLO='U', the diagonal and first superdiagonal of sub( A )
96* have the corresponding elements of the tridiagonal matrix T,
97* and the elements above the first superdiagonal, with the
98* array TAU, represent the orthogonal matrix Q as a product of
99* elementary reflectors, and the strictly lower triangular part
100* of sub( A ) is not referenced. If UPLO='L', the diagonal and
101* first subdiagonal of sub( A ) have the corresponding elements
102* of the tridiagonal matrix T, and the elements below the first
103* subdiagonal, with the array TAU, represent the orthogonal
104* matrix Q as a product of elementary reflectors, and the
105* strictly upper triangular part of sub( A ) is not referenced.
106* On exit, if UPLO = 'U', the upper triangular part of the
107* distributed symmetric matrix sub( A ) is recovered.
108* If UPLO='L', the lower triangular part of the distributed
109* symmetric matrix sub( A ) is recovered.
110*
111* IA (global input) INTEGER
112* The row index in the global array A indicating the first
113* row of sub( A ).
114*
115* JA (global input) INTEGER
116* The column index in the global array A indicating the
117* first column of sub( A ).
118*
119* DESCA (global and local input) INTEGER array of dimension DLEN_.
120* The array descriptor for the distributed matrix A.
121*
122* D (local input) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
123* The diagonal elements of the tridiagonal matrix T:
124* D(i) = A(i,i). D is tied to the distributed matrix A.
125*
126* E (local input) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
127* if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
128* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
129* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
130* distributed matrix A.
131*
132* TAU (local input) DOUBLE PRECISION, array, dimension
133* LOCc(JA+N-1). This array contains the scalar factors TAU of
134* the elementary reflectors. TAU is tied to the distributed
135* matrix A.
136*
137* WORK (local workspace) DOUBLE PRECISION array, dimension (LWORK)
138* LWORK >= 2 * NB *( NB + NP )
139*
140* where NB = MB_A = NB_A,
141* NP = NUMROC( N, NB, MYROW, IAROW, NPROW ),
142* IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ).
143*
144* INDXG2P and NUMROC are ScaLAPACK tool functions;
145* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
146* the subroutine BLACS_GRIDINFO.
147*
148* INFO (global output) INTEGER
149* On exit, if INFO <> 0, a discrepancy has been found between
150* the diagonal and off-diagonal elements of A and the copies
151* contained in the arrays D and E.
152*
153* =====================================================================
154*
155* .. Parameters ..
156 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
157 $ lld_, mb_, m_, nb_, n_, rsrc_
158 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
159 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
160 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
161 DOUBLE PRECISION EIGHT, HALF, ONE, ZERO
162 parameter( eight = 8.0d+0, half = 0.5d+0, one = 1.0d+0,
163 $ zero = 0.0d+0 )
164* ..
165* .. Local Scalars ..
166 LOGICAL UPPER
167 INTEGER I, IACOL, IAROW, ICTXT, II, IPT, IPV, IPX,
168 $ ipy, j, jb, jj, jl, k, mycol, myrow, nb, np,
169 $ npcol, nprow
170 DOUBLE PRECISION ADDBND, D1, D2, E1, E2
171* ..
172* .. Local Arrays ..
173 INTEGER DESCD( DLEN_ ), DESCE( DLEN_ ), DESCV( DLEN_ ),
174 $ desct( dlen_ )
175* ..
176* .. External Functions ..
177 LOGICAL LSAME
178 INTEGER INDXG2P, NUMROC
179 DOUBLE PRECISION PDLAMCH
180 EXTERNAL indxg2p, lsame, numroc, pdlamch
181* ..
182* .. External Subroutines ..
183 EXTERNAL blacs_gridinfo, descset, infog2l, igsum2d,
184 $ pdelget, pdgemm, pdlacpy,
185 $ pdlarft, pdlaset, pdsymm,
186 $ pdsyr2k, pdtrmm
187* ..
188* .. Intrinsic Functions ..
189 INTRINSIC abs, max, min, mod
190* ..
191* .. Executable statements ..
192*
193 ictxt = desca( ctxt_ )
194 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
195*
196 info = 0
197 nb = desca( mb_ )
198 upper = lsame( uplo, 'U' )
199 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, ii, jj,
200 $ iarow, iacol )
201 np = numroc( n, nb, myrow, iarow, nprow )
202*
203 ipt = 1
204 ipv = nb * nb + ipt
205 ipx = nb * np + ipv
206 ipy = nb * np + ipx
207*
208 CALL descset( descd, 1, ja+n-1, 1, desca( nb_ ), myrow,
209 $ desca( csrc_ ), desca( ctxt_ ), 1 )
210*
211 addbnd = eight * pdlamch( ictxt, 'eps' )
212*
213 IF( upper ) THEN
214*
215 CALL descset( desce, 1, ja+n-1, 1, desca( nb_ ), myrow,
216 $ desca( csrc_ ), desca( ctxt_ ), 1 )
217*
218 DO 10 j = 0, n-1
219 d1 = zero
220 e1 = zero
221 d2 = zero
222 e2 = zero
223 CALL pdelget( ' ', ' ', d2, d, 1, ja+j, descd )
224 CALL pdelget( 'Columnwise', ' ', d1, a, ia+j, ja+j, desca )
225 IF( j.LT.(n-1) ) THEN
226 CALL pdelget( ' ', ' ', e2, e, 1, ja+j+1, desce )
227 CALL pdelget( 'Columnwise', ' ', e1, a, ia+j, ja+j+1,
228 $ desca )
229 END IF
230*
231 IF( ( abs( d1 - d2 ).GT.( abs( d2 ) * addbnd ) ) .OR.
232 $ ( abs( e1 - e2 ).GT.( abs( e2 ) * addbnd ) ) )
233 $ info = info + 1
234 10 CONTINUE
235*
236* Compute the upper triangle of sub( A ).
237*
238 CALL descset( descv, n, nb, nb, nb, iarow, iacol, ictxt,
239 $ max( 1, np ) )
240 CALL descset( desct, nb, nb, nb, nb, iarow, iacol, ictxt, nb )
241*
242 DO 20 k = 0, n-1, nb
243 jb = min( nb, n-k )
244 i = ia + k
245 j = ja + k
246*
247* Compute the lower triangular matrix T.
248*
249 CALL pdlarft( 'Backward', 'Columnwise', k+jb-1, jb, a, ia,
250 $ j, desca, tau, work( ipt ), work( ipv ) )
251*
252* Copy Householder vectors into WORK( IPV ).
253*
254 CALL pdlacpy( 'All', k+jb-1, jb, a, ia, j, desca,
255 $ work( ipv ), 1, 1, descv )
256*
257 IF( k.GT.0 ) THEN
258 CALL pdlaset( 'Lower', jb+1, jb, zero, one, work( ipv ),
259 $ k, 1, descv )
260 ELSE
261 CALL pdlaset( 'Lower', jb, jb-1, zero, one, work( ipv ),
262 $ 1, 2, descv )
263 CALL pdlaset( 'Ge', jb, 1, zero, zero, work( ipv ), 1,
264 $ 1, descv )
265 END IF
266*
267* Zero out the strict upper triangular part of A.
268*
269 IF( k.GT.0 ) THEN
270 CALL pdlaset( 'Ge', k-1, jb, zero, zero, a, ia, j,
271 $ desca )
272 CALL pdlaset( 'Upper', jb-1, jb-1, zero, zero, a, i-1,
273 $ j+1, desca )
274 ELSE IF( jb.GT.1 ) THEN
275 CALL pdlaset( 'Upper', jb-2, jb-2, zero, zero, a, ia,
276 $ j+2, desca )
277 END IF
278*
279* (1) X := A * V * T'
280*
281 CALL pdsymm( 'Left', 'Upper', k+jb, jb, one, a, ia, ja,
282 $ desca, work( ipv ), 1, 1, descv, zero,
283 $ work( ipx ), 1, 1, descv )
284 CALL pdtrmm( 'Right', 'Lower', 'Transpose', 'Non-Unit',
285 $ k+jb, jb, one, work( ipt ), 1, 1, desct,
286 $ work( ipx ), 1, 1, descv )
287*
288* (2) X := X - 1/2 * V * (T * V' * X)
289*
290 CALL pdgemm( 'Transpose', 'No transpose', jb, jb, k+jb, one,
291 $ work( ipv ), 1, 1, descv, work( ipx ), 1, 1,
292 $ descv, zero, work( ipy ), 1, 1, desct )
293 CALL pdtrmm( 'Left', 'Lower', 'No transpose', 'Non-Unit',
294 $ jb, jb, one, work( ipt ), 1, 1, desct,
295 $ work( ipy ), 1, 1, desct )
296 CALL pdgemm( 'No tranpose', 'No transpose', k+jb, jb, jb,
297 $ -half, work( ipv ), 1, 1, descv, work( ipy ),
298 $ 1, 1, desct, one, work( ipx ), 1, 1, descv )
299*
300* (3) A := A - X * V' - V * X'
301*
302 CALL pdsyr2k( 'Upper', 'No transpose', k+jb, jb, -one,
303 $ work( ipv ), 1, 1, descv, work( ipx ), 1, 1,
304 $ descv, one, a, ia, ja, desca )
305*
306 descv( csrc_ ) = mod( descv( csrc_ ) + 1, npcol )
307 desct( csrc_ ) = mod( desct( csrc_ ) + 1, npcol )
308*
309 20 CONTINUE
310*
311 ELSE
312*
313 CALL descset( desce, 1, ja+n-2, 1, desca( nb_ ), myrow,
314 $ desca( csrc_ ), desca( ctxt_ ), 1 )
315*
316 DO 30 j = 0, n-1
317 d1 = zero
318 e1 = zero
319 d2 = zero
320 e2 = zero
321 CALL pdelget( ' ', ' ', d2, d, 1, ja+j, descd )
322 CALL pdelget( 'Columnwise', ' ', d1, a, ia+j, ja+j, desca )
323 IF( j.LT.(n-1) ) THEN
324 CALL pdelget( ' ', ' ', e2, e, 1, ja+j, desce )
325 CALL pdelget( 'Columnwise', ' ', e1, a, ia+j+1, ja+j,
326 $ desca )
327 END IF
328*
329 IF( ( abs( d1 - d2 ).GT.( abs( d2 ) * addbnd ) ) .OR.
330 $ ( abs( e1 - e2 ).GT.( abs( e2 ) * addbnd ) ) )
331 $ info = info + 1
332 30 CONTINUE
333*
334* Compute the lower triangle of sub( A ).
335*
336 jl = max( ( ( ja+n-2 ) / nb ) * nb + 1, ja )
337 iacol = indxg2p( jl, nb, mycol, desca( csrc_ ), npcol )
338 CALL descset( descv, n, nb, nb, nb, iarow, iacol, ictxt,
339 $ max( 1, np ) )
340 CALL descset( desct, nb, nb, nb, nb, indxg2p( ia+jl-ja+1, nb,
341 $ myrow, desca( rsrc_ ), nprow ), iacol, ictxt,
342 $ nb )
343*
344 DO 40 j = jl, ja, -nb
345 k = j - ja + 1
346 i = ia + k - 1
347 jb = min( n-k+1, nb )
348*
349* Compute upper triangular matrix T from TAU.
350*
351 CALL pdlarft( 'Forward', 'Columnwise', n-k, jb, a, i+1, j,
352 $ desca, tau, work( ipt ), work( ipv ) )
353*
354* Copy Householder vectors into WORK( IPV ).
355*
356 CALL pdlacpy( 'Lower', n-k, jb, a, i+1, j, desca,
357 $ work( ipv ), k+1, 1, descv )
358 CALL pdlaset( 'Upper', n-k, jb, zero, one, work( ipv ),
359 $ k+1, 1, descv )
360 CALL pdlaset( 'Ge', 1, jb, zero, zero, work( ipv ), k, 1,
361 $ descv )
362*
363* Zero out the strict lower triangular part of A.
364*
365 CALL pdlaset( 'Lower', n-k-1, jb, zero, zero, a, i+2, j,
366 $ desca )
367*
368* (1) X := A * V * T'
369*
370 CALL pdsymm( 'Left', 'Lower', n-k+1, jb, one, a, i, j,
371 $ desca, work( ipv ), k, 1, descv, zero,
372 $ work( ipx ), k, 1, descv )
373 CALL pdtrmm( 'Right', 'Upper', 'Transpose', 'Non-Unit',
374 $ n-k+1, jb, one, work( ipt ), 1, 1, desct,
375 $ work( ipx ), k, 1, descv )
376*
377* (2) X := X - 1/2 * V * (T * V' * X)
378*
379 CALL pdgemm( 'Transpose', 'No transpose', jb, jb, n-k+1,
380 $ one, work( ipv ), k, 1, descv, work( ipx ),
381 $ k, 1, descv, zero, work( ipy ), 1, 1, desct )
382 CALL pdtrmm( 'Left', 'Upper', 'No transpose', 'Non-Unit',
383 $ jb, jb, one, work( ipt ), 1, 1, desct,
384 $ work( ipy ), 1, 1, desct )
385 CALL pdgemm( 'No transpose', 'No transpose', n-k+1, jb, jb,
386 $ -half, work( ipv ), k, 1, descv, work( ipy ),
387 $ 1, 1, desct, one, work( ipx ), k, 1, descv )
388*
389* (3) A := A - X * V' - V * X'
390*
391 CALL pdsyr2k( 'Lower', 'No tranpose', n-k+1, jb, -one,
392 $ work( ipv ), k, 1, descv, work( ipx ), k, 1,
393 $ descv, one, a, i, j, desca )
394*
395 descv( csrc_ ) = mod( descv( csrc_ ) + npcol - 1, npcol )
396 desct( rsrc_ ) = mod( desct( rsrc_ ) + nprow - 1, nprow )
397 desct( csrc_ ) = mod( desct( csrc_ ) + npcol - 1, npcol )
398*
399 40 CONTINUE
400*
401 END IF
402*
403 CALL igsum2d( ictxt, 'All', ' ', 1, 1, info, 1, -1, 0 )
404*
405 RETURN
406*
407* End of PDSYTDRV
408*
409 END
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pdlaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition pdblastst.f:6862
subroutine pdelget(scope, top, alpha, a, ia, ja, desca)
Definition pdelget.f:2
subroutine pdlacpy(uplo, m, n, a, ia, ja, desca, b, ib, jb, descb)
Definition pdlacpy.f:3
subroutine pdlarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pdlarft.f:3
subroutine pdsytdrv(uplo, n, a, ia, ja, desca, d, e, tau, work, info)
Definition pdsytdrv.f:3