ScaLAPACK 2.1  2.1
ScaLAPACK: Scalable Linear Algebra PACKage
pdblas1tst.f
Go to the documentation of this file.
1  BLOCK DATA
2  INTEGER NSUBS
3  parameter(nsubs = 8)
4  CHARACTER*7 SNAMES( NSUBS )
5  COMMON /snamec/snames
6  DATA snames/'PDSWAP ', 'PDSCAL ', 'PDCOPY ',
7  $ 'PDAXPY ', 'PDDOT ', 'PDNRM2 ',
8  $ 'PDASUM ', 'PDAMAX '/
9  END BLOCK DATA
10 
11  PROGRAM pdbla1tst
12 *
13 * -- PBLAS testing driver (version 2.0.2) --
14 * Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
15 * May 1 2012
16 *
17 * Purpose
18 * =======
19 *
20 * PDBLA1TST is the main testing program for the PBLAS Level 1 routines.
21 *
22 * The program must be driven by a short data file. An annotated exam-
23 * ple of a data file can be obtained by deleting the first 3 characters
24 * from the following 44 lines:
25 * 'Level 1 PBLAS, Testing input file'
26 * 'Intel iPSC/860 hypercube, gamma model.'
27 * 'PDBLAS1TST.SUMM' output file name (if any)
28 * 6 device out
29 * F logical flag, T to stop on failures
30 * F logical flag, T to test error exits
31 * 0 verbosity, 0 for pass/fail, 1-3 for matrix dump on errors
32 * 10 the leading dimension gap
33 * 1 number of process grids (ordered pairs of P & Q)
34 * 2 2 1 4 2 3 8 values of P
35 * 2 2 4 1 3 2 1 values of Q
36 * 1.0D0 value of ALPHA
37 * 2 number of tests problems
38 * 3 4 values of N
39 * 6 10 values of M_X
40 * 6 10 values of N_X
41 * 2 5 values of IMB_X
42 * 2 5 values of INB_X
43 * 2 5 values of MB_X
44 * 2 5 values of NB_X
45 * 0 1 values of RSRC_X
46 * 0 0 values of CSRC_X
47 * 1 1 values of IX
48 * 1 1 values of JX
49 * 1 1 values of INCX
50 * 6 10 values of M_Y
51 * 6 10 values of N_Y
52 * 2 5 values of IMB_Y
53 * 2 5 values of INB_Y
54 * 2 5 values of MB_Y
55 * 2 5 values of NB_Y
56 * 0 1 values of RSRC_Y
57 * 0 0 values of CSRC_Y
58 * 1 1 values of IY
59 * 1 1 values of JY
60 * 6 1 values of INCY
61 * PDSWAP T put F for no test in the same column
62 * PDSCAL T put F for no test in the same column
63 * PDCOPY T put F for no test in the same column
64 * PDAXPY T put F for no test in the same column
65 * PDDOT T put F for no test in the same column
66 * PDNRM2 T put F for no test in the same column
67 * PDASUM T put F for no test in the same column
68 * PDAMAX T put F for no test in the same column
69 *
70 * Internal Parameters
71 * ===================
72 *
73 * TOTMEM INTEGER
74 * TOTMEM is a machine-specific parameter indicating the maxi-
75 * mum amount of available memory per process in bytes. The
76 * user should customize TOTMEM to his platform. Remember to
77 * leave room in memory for the operating system, the BLACS
78 * buffer, etc. For example, on a system with 8 MB of memory
79 * per process (e.g., one processor on an Intel iPSC/860), the
80 * parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
81 * code, BLACS buffer, etc). However, for PVM, we usually set
82 * TOTMEM = 2000000. Some experimenting with the maximum value
83 * of TOTMEM may be required. By default, TOTMEM is 2000000.
84 *
85 * DBLESZ INTEGER
86 * DBLESZ indicates the length in bytes on the given platform
87 * for a double precision real. By default, DBLESZ is set to
88 * eight.
89 *
90 * MEM DOUBLE PRECISION array
91 * MEM is an array of dimension TOTMEM / DBLESZ.
92 * All arrays used by SCALAPACK routines are allocated from this
93 * array MEM and referenced by pointers. The integer IPA, for
94 * example, is a pointer to the starting element of MEM for the
95 * matrix A.
96 *
97 * -- Written on April 1, 1998 by
98 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
99 *
100 * =====================================================================
101 *
102 * .. Parameters ..
103  INTEGER maxtests, maxgrids, gapmul, dblesz, totmem,
104  $ memsiz, nsubs
105  DOUBLE PRECISION padval, zero
106  parameter( maxtests = 20, maxgrids = 20, gapmul = 10,
107  $ dblesz = 8, totmem = 2000000,
108  $ memsiz = totmem / dblesz, zero = 0.0d+0,
109  $ padval = -9923.0d+0, nsubs = 8 )
110  INTEGER block_cyclic_2d_inb, csrc_, ctxt_, dlen_,
111  $ dtype_, imb_, inb_, lld_, mb_, m_, nb_, n_,
112  $ rsrc_
113  parameter( block_cyclic_2d_inb = 2, dlen_ = 11,
114  $ dtype_ = 1, ctxt_ = 2, m_ = 3, n_ = 4,
115  $ imb_ = 5, inb_ = 6, mb_ = 7, nb_ = 8,
116  $ rsrc_ = 9, csrc_ = 10, lld_ = 11 )
117 * ..
118 * .. Local Scalars ..
119  LOGICAL errflg, sof, tee
120  INTEGER csrcx, csrcy, i, iam, ictxt, igap, imbx, imby,
121  $ imidx, imidy, inbx, inby, incx, incy, ipmatx,
122  $ ipmaty, ipostx, iposty, iprex, iprey, ipw, ipx,
123  $ ipy, iverb, ix, ixseed, iy, iyseed, j, jx, jy,
124  $ k, ldx, ldy, mbx, mby, memreqd, mpx, mpy, mx,
125  $ my, mycol, myrow, n, nbx, nby, ngrids, nout,
126  $ npcol, nprocs, nprow, nqx, nqy, ntests, nx, ny,
127  $ pisclr, rsrcx, rsrcy, tskip, tstcnt
128  DOUBLE PRECISION alpha, psclr, pusclr
129 * ..
130 * .. Local Arrays ..
131  CHARACTER*80 outfile
132  LOGICAL ltest( nsubs ), ycheck( nsubs )
133  INTEGER cscxval( maxtests ), cscyval( maxtests ),
134  $ descx( dlen_ ), descxr( dlen_ ),
135  $ descy( dlen_ ), descyr( dlen_ ), ierr( 4 ),
136  $ imbxval( maxtests ), imbyval( maxtests ),
137  $ inbxval( maxtests ), inbyval( maxtests ),
138  $ incxval( maxtests ), incyval( maxtests ),
139  $ ixval( maxtests ), iyval( maxtests ),
140  $ jxval( maxtests ), jyval( maxtests ),
141  $ kfail( nsubs ), kpass( nsubs ), kskip( nsubs ),
142  $ ktests( nsubs ), mbxval( maxtests ),
143  $ mbyval( maxtests ), mxval( maxtests ),
144  $ myval( maxtests ), nbxval( maxtests ),
145  $ nbyval( maxtests ), nval( maxtests ),
146  $ nxval( maxtests ), nyval( maxtests ),
147  $ pval( maxtests ), qval( maxtests ),
148  $ rscxval( maxtests ), rscyval( maxtests )
149  DOUBLE PRECISION mem( memsiz )
150 * ..
151 * .. External Subroutines ..
152  EXTERNAL blacs_exit, blacs_get, blacs_gridexit,
153  $ blacs_gridinfo, blacs_gridinit, blacs_pinfo,
154  $ igsum2d, pb_dchekpad, pb_descset2, pb_dfillpad,
155  $ pb_pdlaprnt, pdamax, pdasum, pdaxpy,
157  $ pdchkarg1, pdchkvout, pdcopy, pddot, pdlagen,
158  $ pdmprnt, pdnrm2, pdscal, pdswap, pdvprnt,
160 * ..
161 * .. Intrinsic Functions ..
162  INTRINSIC abs, max, mod
163 * ..
164 * .. Common Blocks ..
165  CHARACTER*7 snames( nsubs )
166  LOGICAL abrtflg
167  INTEGER info, nblog
168  COMMON /snamec/snames
169  COMMON /infoc/info, nblog
170  COMMON /pberrorc/nout, abrtflg
171 * ..
172 * .. Data Statements ..
173  DATA ycheck/.true., .false., .true., .true., .true.,
174  $ .false., .false., .false./
175 * ..
176 * .. Executable Statements ..
177 *
178 * Initialization
179 *
180 * Set flag so that the PBLAS error handler will abort on errors.
181 *
182  abrtflg = .false.
183 *
184 * So far no error, will become true as soon as one error is found.
185 *
186  errflg = .false.
187 *
188 * Test counters
189 *
190  tskip = 0
191  tstcnt = 0
192 *
193 * Seeds for random matrix generations.
194 *
195  ixseed = 100
196  iyseed = 200
197 *
198 * So far no tests have been performed.
199 *
200  DO 10 i = 1, nsubs
201  kpass( i ) = 0
202  kskip( i ) = 0
203  kfail( i ) = 0
204  ktests( i ) = 0
205  10 CONTINUE
206 *
207 * Get starting information
208 *
209  CALL blacs_pinfo( iam, nprocs )
210  CALL pdbla1tstinfo( outfile, nout, ntests, nval, mxval, nxval,
211  $ imbxval, mbxval, inbxval, nbxval, rscxval,
212  $ cscxval, ixval, jxval, incxval, myval,
213  $ nyval, imbyval, mbyval, inbyval, nbyval,
214  $ rscyval, cscyval, iyval, jyval, incyval,
215  $ maxtests, ngrids, pval, maxgrids, qval,
216  $ maxgrids, ltest, sof, tee, iam, igap, iverb,
217  $ nprocs, alpha, mem )
218 *
219  IF( iam.EQ.0 ) THEN
220  WRITE( nout, fmt = 9979 )
221  WRITE( nout, fmt = * )
222  END IF
223 *
224 * If TEE is set then Test Error Exits of routines.
225 *
226  IF( tee )
227  $ CALL pdblas1tstchke( ltest, nout, nprocs )
228 *
229 * Loop over different process grids
230 *
231  DO 60 i = 1, ngrids
232 *
233  nprow = pval( i )
234  npcol = qval( i )
235 *
236 * Make sure grid information is correct
237 *
238  ierr( 1 ) = 0
239  IF( nprow.LT.1 ) THEN
240  IF( iam.EQ.0 )
241  $ WRITE( nout, fmt = 9999 ) 'GRID SIZE', 'NPROW', nprow
242  ierr( 1 ) = 1
243  ELSE IF( npcol.LT.1 ) THEN
244  IF( iam.EQ.0 )
245  $ WRITE( nout, fmt = 9999 ) 'GRID SIZE', 'NPCOL', npcol
246  ierr( 1 ) = 1
247  ELSE IF( nprow*npcol.GT.nprocs ) THEN
248  IF( iam.EQ.0 )
249  $ WRITE( nout, fmt = 9998 ) nprow*npcol, nprocs
250  ierr( 1 ) = 1
251  END IF
252 *
253  IF( ierr( 1 ).GT.0 ) THEN
254  IF( iam.EQ.0 )
255  $ WRITE( nout, fmt = 9997 ) 'GRID'
256  tskip = tskip + 1
257  GO TO 60
258  END IF
259 *
260 * Define process grid
261 *
262  CALL blacs_get( -1, 0, ictxt )
263  CALL blacs_gridinit( ictxt, 'Row-major', nprow, npcol )
264  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
265 *
266 * Go to bottom of process grid loop if this case doesn't use my
267 * process
268 *
269  IF( myrow.GE.nprow .OR. mycol.GE.npcol )
270  $ GO TO 60
271 *
272 * Loop over number of tests
273 *
274  DO 50 j = 1, ntests
275 *
276 * Get the test parameters
277 *
278  n = nval( j )
279  mx = mxval( j )
280  nx = nxval( j )
281  imbx = imbxval( j )
282  mbx = mbxval( j )
283  inbx = inbxval( j )
284  nbx = nbxval( j )
285  rsrcx = rscxval( j )
286  csrcx = cscxval( j )
287  ix = ixval( j )
288  jx = jxval( j )
289  incx = incxval( j )
290  my = myval( j )
291  ny = nyval( j )
292  imby = imbyval( j )
293  mby = mbyval( j )
294  inby = inbyval( j )
295  nby = nbyval( j )
296  rsrcy = rscyval( j )
297  csrcy = cscyval( j )
298  iy = iyval( j )
299  jy = jyval( j )
300  incy = incyval( j )
301 *
302  IF( iam.EQ.0 ) THEN
303  tstcnt = tstcnt + 1
304  WRITE( nout, fmt = * )
305  WRITE( nout, fmt = 9996 ) tstcnt, nprow, npcol
306  WRITE( nout, fmt = * )
307 *
308  WRITE( nout, fmt = 9995 )
309  WRITE( nout, fmt = 9994 )
310  WRITE( nout, fmt = 9995 )
311  WRITE( nout, fmt = 9993 ) n, ix, jx, mx, nx, imbx, inbx,
312  $ mbx, nbx, rsrcx, csrcx, incx
313 *
314  WRITE( nout, fmt = 9995 )
315  WRITE( nout, fmt = 9992 )
316  WRITE( nout, fmt = 9995 )
317  WRITE( nout, fmt = 9993 ) n, iy, jy, my, ny, imby, inby,
318  $ mby, nby, rsrcy, csrcy, incy
319  WRITE( nout, fmt = 9995 )
320  END IF
321 *
322 * Check the validity of the input and initialize DESC_
323 *
324  CALL pvdescchk( ictxt, nout, 'X', descx,
325  $ block_cyclic_2d_inb, mx, nx, imbx, inbx,
326  $ mbx, nbx, rsrcx, csrcx, incx, mpx, nqx,
327  $ iprex, imidx, ipostx, igap, gapmul,
328  $ ierr( 1 ) )
329  CALL pvdescchk( ictxt, nout, 'Y', descy,
330  $ block_cyclic_2d_inb, my, ny, imby, inby,
331  $ mby, nby, rsrcy, csrcy, incy, mpy, nqy,
332  $ iprey, imidy, iposty, igap, gapmul,
333  $ ierr( 2 ) )
334 *
335  IF( ierr( 1 ).GT.0 .OR. ierr( 2 ).GT.0 ) THEN
336  tskip = tskip + 1
337  GO TO 40
338  END IF
339 *
340  ldx = max( 1, mx )
341  ldy = max( 1, my )
342 *
343 * Assign pointers into MEM for matrices corresponding to
344 * vectors X and Y. Ex: IPX starts at position MEM( IPREX+1 ).
345 *
346  ipx = iprex + 1
347  ipy = ipx + descx( lld_ ) * nqx + ipostx + iprey
348  ipmatx = ipy + descy( lld_ ) * nqy + iposty
349  ipmaty = ipmatx + mx * nx
350  ipw = ipmaty + my * ny
351 *
352 * Check if sufficient memory.
353 * Requirement = mem for local part of parallel matrices +
354 * mem for whole matrices for comp. check +
355 * mem for recving comp. check error vals.
356 *
357  memreqd = ipw - 1 +
358  $ max( max( imbx, mbx ), max( imby, mby ) )
359  ierr( 1 ) = 0
360  IF( memreqd.GT.memsiz ) THEN
361  IF( iam.EQ.0 )
362  $ WRITE( nout, fmt = 9990 ) memreqd*dblesz
363  ierr( 1 ) = 1
364  END IF
365 *
366 * Check all processes for an error
367 *
368  CALL igsum2d( ictxt, 'All', ' ', 1, 1, ierr, 1, -1, 0 )
369 *
370  IF( ierr( 1 ).GT.0 ) THEN
371  IF( iam.EQ.0 )
372  $ WRITE( nout, fmt = 9991 )
373  tskip = tskip + 1
374  GO TO 40
375  END IF
376 *
377 * Loop over all PBLAS 1 routines
378 *
379  DO 30 k = 1, nsubs
380 *
381 * Continue only if this sub has to be tested.
382 *
383  IF( .NOT.ltest( k ) )
384  $ GO TO 30
385 *
386  IF( iam.EQ.0 ) THEN
387  WRITE( nout, fmt = * )
388  WRITE( nout, fmt = 9989 ) snames( k )
389  END IF
390 *
391 * Check the validity of the operand sizes
392 *
393  CALL pvdimchk( ictxt, nout, n, 'X', ix, jx, descx, incx,
394  $ ierr( 1 ) )
395  CALL pvdimchk( ictxt, nout, n, 'Y', iy, jy, descy, incy,
396  $ ierr( 2 ) )
397 *
398  IF( ierr( 1 ).NE.0 .OR. ierr( 2 ).NE.0 ) THEN
399  kskip( k ) = kskip( k ) + 1
400  GO TO 30
401  END IF
402 *
403 * Generate distributed matrices X and Y
404 *
405  CALL pdlagen( .false., 'None', 'No diag', 0, mx, nx, 1,
406  $ 1, descx, ixseed, mem( ipx ),
407  $ descx( lld_ ) )
408  IF( ycheck( k ) )
409  $ CALL pdlagen( .false., 'None', 'No diag', 0, my, ny,
410  $ 1, 1, descy, iyseed, mem( ipy ),
411  $ descy( lld_ ) )
412 *
413 * Generate entire matrices on each process.
414 *
415  CALL pb_descset2( descxr, mx, nx, imbx, inbx, mbx, nbx,
416  $ -1, -1, ictxt, max( 1, mx ) )
417  CALL pdlagen( .false., 'None', 'No diag', 0, mx, nx, 1,
418  $ 1, descxr, ixseed, mem( ipmatx ),
419  $ descxr( lld_ ) )
420  IF( ycheck( k ) ) THEN
421  CALL pb_descset2( descyr, my, ny, imby, inby, mby,
422  $ nby, -1, -1, ictxt, max( 1, my ) )
423  CALL pdlagen( .false., 'None', 'No diag', 0, my, ny,
424  $ 1, 1, descyr, iyseed, mem( ipmaty ),
425  $ descyr( lld_ ) )
426  END IF
427 *
428 * Pad the guard zones of X, and Y
429 *
430  CALL pb_dfillpad( ictxt, mpx, nqx, mem( ipx-iprex ),
431  $ descx( lld_ ), iprex, ipostx, padval )
432 *
433  IF( ycheck( k ) ) THEN
434  CALL pb_dfillpad( ictxt, mpy, nqy, mem( ipy-iprey ),
435  $ descy( lld_ ), iprey, iposty,
436  $ padval )
437  END IF
438 *
439 * Initialize the check for INPUT only args.
440 *
441  info = 0
442  CALL pdchkarg1( ictxt, nout, snames( k ), n, alpha, ix,
443  $ jx, descx, incx, iy, jy, descy, incy,
444  $ info )
445 *
446  info = 0
447  psclr = zero
448  pusclr = zero
449  pisclr = 0
450 *
451 * Print initial parallel data if IVERB >= 2.
452 *
453  IF( iverb.EQ.2 ) THEN
454  IF( incx.EQ.descx( m_ ) ) THEN
455  CALL pb_pdlaprnt( 1, n, mem( ipx ), ix, jx, descx,
456  $ 0, 0, 'PARALLEL_INITIAL_X', nout,
457  $ mem( ipw ) )
458  ELSE
459  CALL pb_pdlaprnt( n, 1, mem( ipx ), ix, jx, descx,
460  $ 0, 0, 'PARALLEL_INITIAL_X', nout,
461  $ mem( ipw ) )
462  END IF
463  IF( ycheck( k ) ) THEN
464  IF( incy.EQ.descy( m_ ) ) THEN
465  CALL pb_pdlaprnt( 1, n, mem( ipy ), iy, jy,
466  $ descy, 0, 0,
467  $ 'PARALLEL_INITIAL_Y', nout,
468  $ mem( ipw ) )
469  ELSE
470  CALL pb_pdlaprnt( n, 1, mem( ipy ), iy, jy,
471  $ descy, 0, 0,
472  $ 'PARALLEL_INITIAL_Y', nout,
473  $ mem( ipw ) )
474  END IF
475  END IF
476  ELSE IF( iverb.GE.3 ) THEN
477  CALL pb_pdlaprnt( mx, nx, mem( ipx ), 1, 1, descx, 0,
478  $ 0, 'PARALLEL_INITIAL_X', nout,
479  $ mem( ipw ) )
480  IF( ycheck( k ) )
481  $ CALL pb_pdlaprnt( my, ny, mem( ipy ), 1, 1, descy,
482  $ 0, 0, 'PARALLEL_INITIAL_Y', nout,
483  $ mem( ipw ) )
484  END IF
485 *
486 * Call the PBLAS routine
487 *
488  IF( k.EQ.1 ) THEN
489 *
490 * Test PDSWAP
491 *
492  CALL pdswap( n, mem( ipx ), ix, jx, descx, incx,
493  $ mem( ipy ), iy, jy, descy, incy )
494 *
495  ELSE IF( k.EQ.2 ) THEN
496 *
497 * Test PDSCAL
498 *
499  psclr = alpha
500  CALL pdscal( n, alpha, mem( ipx ), ix, jx, descx,
501  $ incx )
502 *
503  ELSE IF( k.EQ.3 ) THEN
504 *
505 * Test PDCOPY
506 *
507  CALL pdcopy( n, mem( ipx ), ix, jx, descx, incx,
508  $ mem( ipy ), iy, jy, descy, incy )
509 *
510  ELSE IF( k.EQ.4 ) THEN
511 *
512 * Test PDAXPY
513 *
514  psclr = alpha
515  CALL pdaxpy( n, alpha, mem( ipx ), ix, jx, descx,
516  $ incx, mem( ipy ), iy, jy, descy, incy )
517 *
518  ELSE IF( k.EQ.5 ) THEN
519 *
520 * Test PDDOT
521 *
522  CALL pddot( n, psclr, mem( ipx ), ix, jx, descx, incx,
523  $ mem( ipy ), iy, jy, descy, incy )
524 *
525  ELSE IF( k.EQ.6 ) THEN
526 *
527 * Test PDNRM2
528 *
529  CALL pdnrm2( n, pusclr, mem( ipx ), ix, jx, descx,
530  $ incx )
531 *
532  ELSE IF( k.EQ.7 ) THEN
533 *
534 * Test PDASUM
535 *
536  CALL pdasum( n, pusclr, mem( ipx ), ix, jx, descx,
537  $ incx )
538 *
539  ELSE IF( k.EQ.8 ) THEN
540 *
541  CALL pdamax( n, psclr, pisclr, mem( ipx ), ix, jx,
542  $ descx, incx )
543 *
544  END IF
545 *
546 * Check if the operation has been performed.
547 *
548  IF( info.NE.0 ) THEN
549  kskip( k ) = kskip( k ) + 1
550  IF( iam.EQ.0 )
551  $ WRITE( nout, fmt = 9978 ) info
552  GO TO 30
553  END IF
554 *
555 * Check the computations
556 *
557  CALL pdblas1tstchk( ictxt, nout, k, n, psclr, pusclr,
558  $ pisclr, mem( ipmatx ), mem( ipx ),
559  $ ix, jx, descx, incx, mem( ipmaty ),
560  $ mem( ipy ), iy, jy, descy, incy,
561  $ info )
562  IF( mod( info, 2 ).EQ.1 ) THEN
563  ierr( 1 ) = 1
564  ELSE IF( mod( info / 2, 2 ).EQ.1 ) THEN
565  ierr( 2 ) = 1
566  ELSE IF( info.NE.0 ) THEN
567  ierr( 1 ) = 1
568  ierr( 2 ) = 1
569  END IF
570 *
571 * Check padding
572 *
573  CALL pb_dchekpad( ictxt, snames( k ), mpx, nqx,
574  $ mem( ipx-iprex ), descx( lld_ ),
575  $ iprex, ipostx, padval )
576  IF( ycheck( k ) ) THEN
577  CALL pb_dchekpad( ictxt, snames( k ), mpy, nqy,
578  $ mem( ipy-iprey ), descy( lld_ ),
579  $ iprey, iposty, padval )
580  END IF
581 *
582 * Check input-only scalar arguments
583 *
584  info = 1
585  CALL pdchkarg1( ictxt, nout, snames( k ), n, alpha, ix,
586  $ jx, descx, incx, iy, jy, descy, incy,
587  $ info )
588 *
589 * Check input-only array arguments
590 *
591  CALL pdchkvout( n, mem( ipmatx ), mem( ipx ), ix, jx,
592  $ descx, incx, ierr( 3 ) )
593 *
594  IF( ierr( 3 ).NE.0 ) THEN
595  IF( iam.EQ.0 )
596  $ WRITE( nout, fmt = 9986 ) 'PARALLEL_X', snames( k )
597  END IF
598 *
599  IF( ycheck( k ) ) THEN
600  CALL pdchkvout( n, mem( ipmaty ), mem( ipy ), iy, jy,
601  $ descy, incy, ierr( 4 ) )
602  IF( ierr( 4 ).NE.0 ) THEN
603  IF( iam.EQ.0 )
604  $ WRITE( nout, fmt = 9986 ) 'PARALLEL_Y',
605  $ snames( k )
606  END IF
607  END IF
608 *
609 * Only node 0 prints computational test result
610 *
611  IF( info.NE.0 .OR. ierr( 1 ).NE.0 .OR.
612  $ ierr( 2 ).NE.0 .OR. ierr( 3 ).NE.0 .OR.
613  $ ierr( 4 ).NE. 0 ) THEN
614  IF( iam.EQ.0 )
615  $ WRITE( nout, fmt = 9988 ) snames( k )
616  kfail( k ) = kfail( k ) + 1
617  errflg = .true.
618  ELSE
619  IF( iam.EQ.0 )
620  $ WRITE( nout, fmt = 9987 ) snames( k )
621  kpass( k ) = kpass( k ) + 1
622  END IF
623 *
624 * Dump matrix if IVERB >= 1 and error.
625 *
626  IF( iverb.GE.1 .AND. errflg ) THEN
627  IF( ierr( 3 ).NE.0 .OR. iverb.GE.3 ) THEN
628  CALL pdmprnt( ictxt, nout, mx, nx, mem( ipmatx ),
629  $ ldx, 0, 0, 'SERIAL_X' )
630  CALL pb_pdlaprnt( mx, nx, mem( ipx ), 1, 1, descx,
631  $ 0, 0, 'PARALLEL_X', nout,
632  $ mem( ipmatx ) )
633  ELSE IF( ierr( 1 ).NE.0 ) THEN
634  IF( n.GT.0 )
635  $ CALL pdvprnt( ictxt, nout, n,
636  $ mem( ipmatx+ix-1+(jx-1)*ldx ),
637  $ incx, 0, 0, 'SERIAL_X' )
638  IF( incx.EQ.descx( m_ ) ) THEN
639  CALL pb_pdlaprnt( 1, n, mem( ipx ), ix, jx,
640  $ descx, 0, 0, 'PARALLEL_X',
641  $ nout, mem( ipmatx ) )
642  ELSE
643  CALL pb_pdlaprnt( n, 1, mem( ipx ), ix, jx,
644  $ descx, 0, 0, 'PARALLEL_X',
645  $ nout, mem( ipmatx ) )
646  END IF
647  END IF
648  IF( ycheck( k ) ) THEN
649  IF( ierr( 4 ).NE.0 .OR. iverb.GE.3 ) THEN
650  CALL pdmprnt( ictxt, nout, my, ny,
651  $ mem( ipmaty ), ldy, 0, 0,
652  $ 'SERIAL_Y' )
653  CALL pb_pdlaprnt( my, ny, mem( ipy ), 1, 1,
654  $ descy, 0, 0, 'PARALLEL_Y',
655  $ nout, mem( ipmatx ) )
656  ELSE IF( ierr( 2 ).NE.0 ) THEN
657  IF( n.GT.0 )
658  $ CALL pdvprnt( ictxt, nout, n,
659  $ mem( ipmaty+iy-1+(jy-1)*ldy ),
660  $ incy, 0, 0, 'SERIAL_Y' )
661  IF( incy.EQ.descy( m_ ) ) THEN
662  CALL pb_pdlaprnt( 1, n, mem( ipy ), iy, jy,
663  $ descy, 0, 0, 'PARALLEL_Y',
664  $ nout, mem( ipmatx ) )
665  ELSE
666  CALL pb_pdlaprnt( n, 1, mem( ipy ), iy, jy,
667  $ descy, 0, 0, 'PARALLEL_Y',
668  $ nout, mem( ipmatx ) )
669  END IF
670  END IF
671  END IF
672  END IF
673 *
674 * Leave if error and "Stop On Failure"
675 *
676  IF( sof.AND.errflg )
677  $ GO TO 70
678 *
679  30 CONTINUE
680 *
681  40 IF( iam.EQ.0 ) THEN
682  WRITE( nout, fmt = * )
683  WRITE( nout, fmt = 9985 ) j
684  END IF
685 *
686  50 CONTINUE
687 *
688  CALL blacs_gridexit( ictxt )
689 *
690  60 CONTINUE
691 *
692 * Come here, if error and "Stop On Failure"
693 *
694  70 CONTINUE
695 *
696 * Before printing out final stats, add TSKIP to all skips
697 *
698  DO 80 i = 1, nsubs
699  IF( ltest( i ) ) THEN
700  kskip( i ) = kskip( i ) + tskip
701  ktests( i ) = kskip( i ) + kfail( i ) + kpass( i )
702  END IF
703  80 CONTINUE
704 *
705 * Print results
706 *
707  IF( iam.EQ.0 ) THEN
708  WRITE( nout, fmt = * )
709  WRITE( nout, fmt = 9981 )
710  WRITE( nout, fmt = * )
711  WRITE( nout, fmt = 9983 )
712  WRITE( nout, fmt = 9982 )
713 *
714  DO 90 i = 1, nsubs
715  WRITE( nout, fmt = 9984 ) '|', snames( i ), ktests( i ),
716  $ kpass( i ), kfail( i ), kskip( i )
717  90 CONTINUE
718  WRITE( nout, fmt = * )
719  WRITE( nout, fmt = 9980 )
720  WRITE( nout, fmt = * )
721 *
722  END IF
723 *
724  CALL blacs_exit( 0 )
725 *
726  9999 FORMAT( 'ILLEGAL ', a, ': ', a, ' = ', i10,
727  $ ' should be at least 1' )
728  9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', i4,
729  $ '. It can be at most', i4 )
730  9997 FORMAT( 'Bad ', a, ' parameters: going on to next test case.' )
731  9996 FORMAT( 2x, 'Test number ', i4 , ' started on a ', i6, ' x ',
732  $ i6, ' process grid.' )
733  9995 FORMAT( 2x, '---------------------------------------------------',
734  $ '--------------------------' )
735  9994 FORMAT( 2x, ' N IX JX MX NX IMBX INBX',
736  $ ' MBX NBX RSRCX CSRCX INCX' )
737  9993 FORMAT( 2x,i6,1x,i6,1x,i6,1x,i6,1x,i6,1x,i5,1x,i5,1x,i5,1x,i5,1x,
738  $ i5,1x,i5,1x,i6 )
739  9992 FORMAT( 2x, ' N IY JY MY NY IMBY INBY',
740  $ ' MBY NBY RSRCY CSRCY INCY' )
741  9991 FORMAT( 'Not enough memory for this test: going on to',
742  $ ' next test case.' )
743  9990 FORMAT( 'Not enough memory. Need: ', i12 )
744  9989 FORMAT( 2x, ' Tested Subroutine: ', a )
745  9988 FORMAT( 2x, ' ***** Computational check: ', a, ' ',
746  $ ' FAILED ',' *****' )
747  9987 FORMAT( 2x, ' ***** Computational check: ', a, ' ',
748  $ ' PASSED ',' *****' )
749  9986 FORMAT( 2x, ' ***** ERROR ***** Matrix operand ', a,
750  $ ' modified by ', a, ' *****' )
751  9985 FORMAT( 2x, 'Test number ', i4, ' completed.' )
752  9984 FORMAT( 2x,a1,2x,a7,8x,i4,6x,i4,5x,i4,4x,i4 )
753  9983 FORMAT( 2x, ' SUBROUTINE TOTAL TESTS PASSED FAILED ',
754  $ 'SKIPPED' )
755  9982 FORMAT( 2x, ' ---------- ----------- ------ ------ ',
756  $ '-------' )
757  9981 FORMAT( 2x, 'Testing Summary')
758  9980 FORMAT( 2x, 'End of Tests.' )
759  9979 FORMAT( 2x, 'Tests started.' )
760  9978 FORMAT( 2x, ' ***** Operation not supported, error code: ',
761  $ i5, ' *****' )
762 *
763  stop
764 *
765 * End of PDBLA1TST
766 *
767  END
768  SUBROUTINE pdbla1tstinfo( SUMMRY, NOUT, NMAT, NVAL, MXVAL,
769  $ NXVAL, IMBXVAL, MBXVAL, INBXVAL,
770  $ NBXVAL, RSCXVAL, CSCXVAL, IXVAL,
771  $ JXVAL, INCXVAL, MYVAL, NYVAL, IMBYVAL,
772  $ MBYVAL, INBYVAL, NBYVAL, RSCYVAL,
773  $ CSCYVAL, IYVAL, JYVAL, INCYVAL,
774  $ LDVAL, NGRIDS, PVAL, LDPVAL, QVAL,
775  $ LDQVAL, LTEST, SOF, TEE, IAM, IGAP,
776  $ IVERB, NPROCS, ALPHA, WORK )
777 *
778 * -- PBLAS test routine (version 2.0) --
779 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
780 * and University of California, Berkeley.
781 * April 1, 1998
782 *
783 * .. Scalar Arguments ..
784  LOGICAL SOF, TEE
785  INTEGER IAM, IGAP, IVERB, LDPVAL, LDQVAL, LDVAL,
786  $ NGRIDS, NMAT, NOUT, NPROCS
787  DOUBLE PRECISION ALPHA
788 * ..
789 * .. Array Arguments ..
790  CHARACTER*( * ) SUMMRY
791  LOGICAL LTEST( * )
792  INTEGER CSCXVAL( LDVAL ), CSCYVAL( LDVAL ),
793  $ imbxval( ldval ), imbyval( ldval ),
794  $ inbxval( ldval ), inbyval( ldval ),
795  $ incxval( ldval ), incyval( ldval ),
796  $ ixval( ldval ), iyval( ldval ), jxval( ldval ),
797  $ jyval( ldval ), mbxval( ldval ),
798  $ mbyval( ldval ), mxval( ldval ),
799  $ myval( ldval ), nbxval( ldval ),
800  $ nbyval( ldval ), nval( ldval ), nxval( ldval ),
801  $ nyval( ldval ), pval( ldpval ), qval( ldqval ),
802  $ rscxval( ldval ), rscyval( ldval ), work( * )
803 * ..
804 *
805 * Purpose
806 * =======
807 *
808 * PDBLA1TSTINFO get the needed startup information for testing various
809 * Level 1 PBLAS routines, and transmits it to all processes.
810 *
811 * Notes
812 * =====
813 *
814 * For packing the information we assumed that the length in bytes of an
815 * integer is equal to the length in bytes of a real single precision.
816 *
817 * Arguments
818 * =========
819 *
820 * SUMMRY (global output) CHARACTER*(*)
821 * On exit, SUMMRY is the name of output (summary) file (if
822 * any). SUMMRY is only defined for process 0.
823 *
824 * NOUT (global output) INTEGER
825 * On exit, NOUT specifies the unit number for the output file.
826 * When NOUT is 6, output to screen, when NOUT is 0, output to
827 * stderr. NOUT is only defined for process 0.
828 *
829 * NMAT (global output) INTEGER
830 * On exit, NMAT specifies the number of different test cases.
831 *
832 * NVAL (global output) INTEGER array
833 * On entry, NVAL is an array of dimension LDVAL. On exit, this
834 * array contains the values of N to run the code with.
835 *
836 * MXVAL (global output) INTEGER array
837 * On entry, MXVAL is an array of dimension LDVAL. On exit, this
838 * array contains the values of DESCX( M_ ) to run the code
839 * with.
840 *
841 * NXVAL (global output) INTEGER array
842 * On entry, NXVAL is an array of dimension LDVAL. On exit, this
843 * array contains the values of DESCX( N_ ) to run the code
844 * with.
845 *
846 * IMBXVAL (global output) INTEGER array
847 * On entry, IMBXVAL is an array of dimension LDVAL. On exit,
848 * this array contains the values of DESCX( IMB_ ) to run the
849 * code with.
850 *
851 * MBXVAL (global output) INTEGER array
852 * On entry, MBXVAL is an array of dimension LDVAL. On exit,
853 * this array contains the values of DESCX( MB_ ) to run the
854 * code with.
855 *
856 * INBXVAL (global output) INTEGER array
857 * On entry, INBXVAL is an array of dimension LDVAL. On exit,
858 * this array contains the values of DESCX( INB_ ) to run the
859 * code with.
860 *
861 * NBXVAL (global output) INTEGER array
862 * On entry, NBXVAL is an array of dimension LDVAL. On exit,
863 * this array contains the values of DESCX( NB_ ) to run the
864 * code with.
865 *
866 * RSCXVAL (global output) INTEGER array
867 * On entry, RSCXVAL is an array of dimension LDVAL. On exit,
868 * this array contains the values of DESCX( RSRC_ ) to run the
869 * code with.
870 *
871 * CSCXVAL (global output) INTEGER array
872 * On entry, CSCXVAL is an array of dimension LDVAL. On exit,
873 * this array contains the values of DESCX( CSRC_ ) to run the
874 * code with.
875 *
876 * IXVAL (global output) INTEGER array
877 * On entry, IXVAL is an array of dimension LDVAL. On exit, this
878 * array contains the values of IX to run the code with.
879 *
880 * JXVAL (global output) INTEGER array
881 * On entry, JXVAL is an array of dimension LDVAL. On exit, this
882 * array contains the values of JX to run the code with.
883 *
884 * INCXVAL (global output) INTEGER array
885 * On entry, INCXVAL is an array of dimension LDVAL. On exit,
886 * this array contains the values of INCX to run the code with.
887 *
888 * MYVAL (global output) INTEGER array
889 * On entry, MYVAL is an array of dimension LDVAL. On exit, this
890 * array contains the values of DESCY( M_ ) to run the code
891 * with.
892 *
893 * NYVAL (global output) INTEGER array
894 * On entry, NYVAL is an array of dimension LDVAL. On exit, this
895 * array contains the values of DESCY( N_ ) to run the code
896 * with.
897 *
898 * IMBYVAL (global output) INTEGER array
899 * On entry, IMBYVAL is an array of dimension LDVAL. On exit,
900 * this array contains the values of DESCY( IMB_ ) to run the
901 * code with.
902 *
903 * MBYVAL (global output) INTEGER array
904 * On entry, MBYVAL is an array of dimension LDVAL. On exit,
905 * this array contains the values of DESCY( MB_ ) to run the
906 * code with.
907 *
908 * INBYVAL (global output) INTEGER array
909 * On entry, INBYVAL is an array of dimension LDVAL. On exit,
910 * this array contains the values of DESCY( INB_ ) to run the
911 * code with.
912 *
913 * NBYVAL (global output) INTEGER array
914 * On entry, NBYVAL is an array of dimension LDVAL. On exit,
915 * this array contains the values of DESCY( NB_ ) to run the
916 * code with.
917 *
918 * RSCYVAL (global output) INTEGER array
919 * On entry, RSCYVAL is an array of dimension LDVAL. On exit,
920 * this array contains the values of DESCY( RSRC_ ) to run the
921 * code with.
922 *
923 * CSCYVAL (global output) INTEGER array
924 * On entry, CSCYVAL is an array of dimension LDVAL. On exit,
925 * this array contains the values of DESCY( CSRC_ ) to run the
926 * code with.
927 *
928 * IYVAL (global output) INTEGER array
929 * On entry, IYVAL is an array of dimension LDVAL. On exit, this
930 * array contains the values of IY to run the code with.
931 *
932 * JYVAL (global output) INTEGER array
933 * On entry, JYVAL is an array of dimension LDVAL. On exit, this
934 * array contains the values of JY to run the code with.
935 *
936 * INCYVAL (global output) INTEGER array
937 * On entry, INCYVAL is an array of dimension LDVAL. On exit,
938 * this array contains the values of INCY to run the code with.
939 *
940 * LDVAL (global input) INTEGER
941 * On entry, LDVAL specifies the maximum number of different va-
942 * lues that can be used for DESCX(:), IX, JX, INCX, DESCY(:),
943 * IY, JY and INCY. This is also the maximum number of test
944 * cases.
945 *
946 * NGRIDS (global output) INTEGER
947 * On exit, NGRIDS specifies the number of different values that
948 * can be used for P and Q.
949 *
950 * PVAL (global output) INTEGER array
951 * On entry, PVAL is an array of dimension LDPVAL. On exit, this
952 * array contains the values of P to run the code with.
953 *
954 * LDPVAL (global input) INTEGER
955 * On entry, LDPVAL specifies the maximum number of different
956 * values that can be used for P.
957 *
958 * QVAL (global output) INTEGER array
959 * On entry, QVAL is an array of dimension LDQVAL. On exit, this
960 * array contains the values of Q to run the code with.
961 *
962 * LDQVAL (global input) INTEGER
963 * On entry, LDQVAL specifies the maximum number of different
964 * values that can be used for Q.
965 *
966 * LTEST (global output) LOGICAL array
967 * On entry, LTEST is an array of dimension at least eight. On
968 * exit, if LTEST( i ) is .TRUE., the i-th Level 1 PBLAS routine
969 * will be tested. See the input file for the ordering of the
970 * routines.
971 *
972 * SOF (global output) LOGICAL
973 * On exit, if SOF is .TRUE., the tester will stop on the first
974 * detected failure. Otherwise, it won't.
975 *
976 * TEE (global output) LOGICAL
977 * On exit, if TEE is .TRUE., the tester will perform the error
978 * exit tests. These tests won't be performed otherwise.
979 *
980 * IAM (local input) INTEGER
981 * On entry, IAM specifies the number of the process executing
982 * this routine.
983 *
984 * IGAP (global output) INTEGER
985 * On exit, IGAP specifies the user-specified gap used for pad-
986 * ding. IGAP must be at least zero.
987 *
988 * IVERB (global output) INTEGER
989 * On exit, IVERB specifies the output verbosity level: 0 for
990 * pass/fail, 1, 2 or 3 for matrix dump on errors.
991 *
992 * NPROCS (global input) INTEGER
993 * On entry, NPROCS specifies the total number of processes.
994 *
995 * ALPHA (global output) DOUBLE PRECISION
996 * On exit, ALPHA specifies the value of alpha to be used in all
997 * the test cases.
998 *
999 * WORK (local workspace) INTEGER array
1000 * On entry, WORK is an array of dimension at least
1001 * MAX( 2, 2*NGRIDS+23*NMAT+NSUBS+4 ) with NSUBS equal to 8.
1002 * This array is used to pack all output arrays in order to send
1003 * the information in one message.
1004 *
1005 * -- Written on April 1, 1998 by
1006 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
1007 *
1008 * =====================================================================
1009 *
1010 * .. Parameters ..
1011  INTEGER NIN, NSUBS
1012  PARAMETER ( NIN = 11, nsubs = 8 )
1013 * ..
1014 * .. Local Scalars ..
1015  LOGICAL LTESTT
1016  INTEGER I, ICTXT, J
1017  DOUBLE PRECISION EPS
1018 * ..
1019 * .. Local Arrays ..
1020  CHARACTER*7 SNAMET
1021  CHARACTER*79 USRINFO
1022 * ..
1023 * .. External Subroutines ..
1024  EXTERNAL blacs_abort, blacs_get, blacs_gridexit,
1025  $ blacs_gridinit, blacs_setup, dgebr2d, dgebs2d,
1026  $ icopy, igebr2d, igebs2d, sgebr2d, sgebs2d
1027 * ..
1028 * .. External Functions ..
1029  DOUBLE PRECISION PDLAMCH
1030  EXTERNAL PDLAMCH
1031 * ..
1032 * .. Intrinsic Functions ..
1033  INTRINSIC max, min
1034 * ..
1035 * .. Common Blocks ..
1036  CHARACTER*7 SNAMES( NSUBS )
1037  COMMON /snamec/snames
1038 * ..
1039 * .. Executable Statements ..
1040 *
1041 * Process 0 reads the input data, broadcasts to other processes and
1042 * writes needed information to NOUT
1043 *
1044  IF( iam.EQ.0 ) THEN
1045 *
1046 * Open file and skip data file header
1047 *
1048  OPEN( nin, file='PDBLAS1TST.dat', status='OLD' )
1049  READ( nin, fmt = * ) summry
1050  summry = ' '
1051 *
1052 * Read in user-supplied info about machine type, compiler, etc.
1053 *
1054  READ( nin, fmt = 9999 ) usrinfo
1055 *
1056 * Read name and unit number for summary output file
1057 *
1058  READ( nin, fmt = * ) summry
1059  READ( nin, fmt = * ) nout
1060  IF( nout.NE.0 .AND. nout.NE.6 )
1061  $ OPEN( nout, file = summry, status = 'UNKNOWN' )
1062 *
1063 * Read and check the parameter values for the tests.
1064 *
1065 * Read the flag that indicates if Stop on Failure
1066 *
1067  READ( nin, fmt = * ) sof
1068 *
1069 * Read the flag that indicates if Test Error Exits
1070 *
1071  READ( nin, fmt = * ) tee
1072 *
1073 * Read the verbosity level
1074 *
1075  READ( nin, fmt = * ) iverb
1076  IF( iverb.LT.0 .OR. iverb.GT.3 )
1077  $ iverb = 0
1078 *
1079 * Read the leading dimension gap
1080 *
1081  READ( nin, fmt = * ) igap
1082  IF( igap.LT.0 )
1083  $ igap = 0
1084 *
1085 * Get number of grids
1086 *
1087  READ( nin, fmt = * ) ngrids
1088  IF( ngrids.LT.1 .OR. ngrids.GT.ldpval ) THEN
1089  WRITE( nout, fmt = 9998 ) 'Grids', ldpval
1090  GO TO 100
1091  ELSE IF( ngrids.GT.ldqval ) THEN
1092  WRITE( nout, fmt = 9998 ) 'Grids', ldqval
1093  GO TO 100
1094  END IF
1095 *
1096 * Get values of P and Q
1097 *
1098  READ( nin, fmt = * ) ( pval( i ), i = 1, ngrids )
1099  READ( nin, fmt = * ) ( qval( i ), i = 1, ngrids )
1100 *
1101 * Read ALPHA
1102 *
1103  READ( nin, fmt = * ) alpha
1104 *
1105 * Read number of tests.
1106 *
1107  READ( nin, fmt = * ) nmat
1108  IF( nmat.LT.1 .OR. nmat.GT.ldval ) THEN
1109  WRITE( nout, fmt = 9998 ) 'Tests', ldval
1110  GO TO 100
1111  END IF
1112 *
1113 * Read in input data into arrays.
1114 *
1115  READ( nin, fmt = * ) ( nval( i ), i = 1, nmat )
1116  READ( nin, fmt = * ) ( mxval( i ), i = 1, nmat )
1117  READ( nin, fmt = * ) ( nxval( i ), i = 1, nmat )
1118  READ( nin, fmt = * ) ( imbxval( i ), i = 1, nmat )
1119  READ( nin, fmt = * ) ( inbxval( i ), i = 1, nmat )
1120  READ( nin, fmt = * ) ( mbxval( i ), i = 1, nmat )
1121  READ( nin, fmt = * ) ( nbxval( i ), i = 1, nmat )
1122  READ( nin, fmt = * ) ( rscxval( i ), i = 1, nmat )
1123  READ( nin, fmt = * ) ( cscxval( i ), i = 1, nmat )
1124  READ( nin, fmt = * ) ( ixval( i ), i = 1, nmat )
1125  READ( nin, fmt = * ) ( jxval( i ), i = 1, nmat )
1126  READ( nin, fmt = * ) ( incxval( i ), i = 1, nmat )
1127  READ( nin, fmt = * ) ( myval( i ), i = 1, nmat )
1128  READ( nin, fmt = * ) ( nyval( i ), i = 1, nmat )
1129  READ( nin, fmt = * ) ( imbyval( i ), i = 1, nmat )
1130  READ( nin, fmt = * ) ( inbyval( i ), i = 1, nmat )
1131  READ( nin, fmt = * ) ( mbyval( i ), i = 1, nmat )
1132  READ( nin, fmt = * ) ( nbyval( i ), i = 1, nmat )
1133  READ( nin, fmt = * ) ( rscyval( i ), i = 1, nmat )
1134  READ( nin, fmt = * ) ( cscyval( i ), i = 1, nmat )
1135  READ( nin, fmt = * ) ( iyval( i ), i = 1, nmat )
1136  READ( nin, fmt = * ) ( jyval( i ), i = 1, nmat )
1137  READ( nin, fmt = * ) ( incyval( i ), i = 1, nmat )
1138 *
1139 * Read names of subroutines and flags which indicate
1140 * whether they are to be tested.
1141 *
1142  DO 10 i = 1, nsubs
1143  ltest( i ) = .false.
1144  10 CONTINUE
1145  20 CONTINUE
1146  READ( nin, fmt = 9996, END = 50 ) SNAMET, ltestt
1147  DO 30 i = 1, nsubs
1148  IF( snamet.EQ.snames( i ) )
1149  $ GO TO 40
1150  30 CONTINUE
1151 *
1152  WRITE( nout, fmt = 9995 )snamet
1153  GO TO 100
1154 *
1155  40 CONTINUE
1156  ltest( i ) = ltestt
1157  GO TO 20
1158 *
1159  50 CONTINUE
1160 *
1161 * Close input file
1162 *
1163  CLOSE ( nin )
1164 *
1165 * For pvm only: if virtual machine not set up, allocate it and
1166 * spawn the correct number of processes.
1167 *
1168  IF( nprocs.LT.1 ) THEN
1169  nprocs = 0
1170  DO 60 i = 1, ngrids
1171  nprocs = max( nprocs, pval( i )*qval( i ) )
1172  60 CONTINUE
1173  CALL blacs_setup( iam, nprocs )
1174  END IF
1175 *
1176 * Temporarily define blacs grid to include all processes so
1177 * information can be broadcast to all processes
1178 *
1179  CALL blacs_get( -1, 0, ictxt )
1180  CALL blacs_gridinit( ictxt, 'Row-major', 1, nprocs )
1181 *
1182 * Compute machine epsilon
1183 *
1184  eps = pdlamch( ictxt, 'eps' )
1185 *
1186 * Pack information arrays and broadcast
1187 *
1188  CALL dgebs2d( ictxt, 'All', ' ', 1, 1, alpha, 1 )
1189 *
1190  work( 1 ) = ngrids
1191  work( 2 ) = nmat
1192  CALL igebs2d( ictxt, 'All', ' ', 2, 1, work, 2 )
1193 *
1194  i = 1
1195  IF( sof ) THEN
1196  work( i ) = 1
1197  ELSE
1198  work( i ) = 0
1199  END IF
1200  i = i + 1
1201  IF( tee ) THEN
1202  work( i ) = 1
1203  ELSE
1204  work( i ) = 0
1205  END IF
1206  i = i + 1
1207  work( i ) = iverb
1208  i = i + 1
1209  work( i ) = igap
1210  i = i + 1
1211  CALL icopy( ngrids, pval, 1, work( i ), 1 )
1212  i = i + ngrids
1213  CALL icopy( ngrids, qval, 1, work( i ), 1 )
1214  i = i + ngrids
1215  CALL icopy( nmat, nval, 1, work( i ), 1 )
1216  i = i + nmat
1217  CALL icopy( nmat, mxval, 1, work( i ), 1 )
1218  i = i + nmat
1219  CALL icopy( nmat, nxval, 1, work( i ), 1 )
1220  i = i + nmat
1221  CALL icopy( nmat, imbxval, 1, work( i ), 1 )
1222  i = i + nmat
1223  CALL icopy( nmat, inbxval, 1, work( i ), 1 )
1224  i = i + nmat
1225  CALL icopy( nmat, mbxval, 1, work( i ), 1 )
1226  i = i + nmat
1227  CALL icopy( nmat, nbxval, 1, work( i ), 1 )
1228  i = i + nmat
1229  CALL icopy( nmat, rscxval, 1, work( i ), 1 )
1230  i = i + nmat
1231  CALL icopy( nmat, cscxval, 1, work( i ), 1 )
1232  i = i + nmat
1233  CALL icopy( nmat, ixval, 1, work( i ), 1 )
1234  i = i + nmat
1235  CALL icopy( nmat, jxval, 1, work( i ), 1 )
1236  i = i + nmat
1237  CALL icopy( nmat, incxval, 1, work( i ), 1 )
1238  i = i + nmat
1239  CALL icopy( nmat, myval, 1, work( i ), 1 )
1240  i = i + nmat
1241  CALL icopy( nmat, nyval, 1, work( i ), 1 )
1242  i = i + nmat
1243  CALL icopy( nmat, imbyval, 1, work( i ), 1 )
1244  i = i + nmat
1245  CALL icopy( nmat, inbyval, 1, work( i ), 1 )
1246  i = i + nmat
1247  CALL icopy( nmat, mbyval, 1, work( i ), 1 )
1248  i = i + nmat
1249  CALL icopy( nmat, nbyval, 1, work( i ), 1 )
1250  i = i + nmat
1251  CALL icopy( nmat, rscyval, 1, work( i ), 1 )
1252  i = i + nmat
1253  CALL icopy( nmat, cscyval, 1, work( i ), 1 )
1254  i = i + nmat
1255  CALL icopy( nmat, iyval, 1, work( i ), 1 )
1256  i = i + nmat
1257  CALL icopy( nmat, jyval, 1, work( i ), 1 )
1258  i = i + nmat
1259  CALL icopy( nmat, incyval, 1, work( i ), 1 )
1260  i = i + nmat
1261 *
1262  DO 70 j = 1, nsubs
1263  IF( ltest( j ) ) THEN
1264  work( i ) = 1
1265  ELSE
1266  work( i ) = 0
1267  END IF
1268  i = i + 1
1269  70 CONTINUE
1270  i = i - 1
1271  CALL igebs2d( ictxt, 'All', ' ', i, 1, work, i )
1272 *
1273 * regurgitate input
1274 *
1275  WRITE( nout, fmt = 9999 ) 'Level 1 PBLAS testing program.'
1276  WRITE( nout, fmt = 9999 ) usrinfo
1277  WRITE( nout, fmt = * )
1278  WRITE( nout, fmt = 9999 )
1279  $ 'Tests of the real double precision '//
1280  $ 'Level 1 PBLAS'
1281  WRITE( nout, fmt = * )
1282  WRITE( nout, fmt = 9999 )
1283  $ 'The following parameter values will be used:'
1284  WRITE( nout, fmt = * )
1285  WRITE( nout, fmt = 9993 ) nmat
1286  WRITE( nout, fmt = 9992 ) ngrids
1287  WRITE( nout, fmt = 9990 )
1288  $ 'P', ( pval(i), i = 1, min(ngrids, 5) )
1289  IF( ngrids.GT.5 )
1290  $ WRITE( nout, fmt = 9991 ) ( pval(i), i = 6,
1291  $ min( 10, ngrids ) )
1292  IF( ngrids.GT.10 )
1293  $ WRITE( nout, fmt = 9991 ) ( pval(i), i = 11,
1294  $ min( 15, ngrids ) )
1295  IF( ngrids.GT.15 )
1296  $ WRITE( nout, fmt = 9991 ) ( pval(i), i = 16, ngrids )
1297  WRITE( nout, fmt = 9990 )
1298  $ 'Q', ( qval(i), i = 1, min(ngrids, 5) )
1299  IF( ngrids.GT.5 )
1300  $ WRITE( nout, fmt = 9991 ) ( qval(i), i = 6,
1301  $ min( 10, ngrids ) )
1302  IF( ngrids.GT.10 )
1303  $ WRITE( nout, fmt = 9991 ) ( qval(i), i = 11,
1304  $ min( 15, ngrids ) )
1305  IF( ngrids.GT.15 )
1306  $ WRITE( nout, fmt = 9991 ) ( qval(i), i = 16, ngrids )
1307  WRITE( nout, fmt = 9988 ) sof
1308  WRITE( nout, fmt = 9987 ) tee
1309  WRITE( nout, fmt = 9983 ) igap
1310  WRITE( nout, fmt = 9986 ) iverb
1311  WRITE( nout, fmt = 9982 ) alpha
1312  IF( ltest( 1 ) ) THEN
1313  WRITE( nout, fmt = 9985 ) snames( 1 ), ' ... Yes'
1314  ELSE
1315  WRITE( nout, fmt = 9985 ) snames( 1 ), ' ... No '
1316  END IF
1317  DO 80 i = 2, nsubs
1318  IF( ltest( i ) ) THEN
1319  WRITE( nout, fmt = 9984 ) snames( i ), ' ... Yes'
1320  ELSE
1321  WRITE( nout, fmt = 9984 ) snames( i ), ' ... No '
1322  END IF
1323  80 CONTINUE
1324  WRITE( nout, fmt = 9994 ) eps
1325  WRITE( nout, fmt = * )
1326 *
1327  ELSE
1328 *
1329 * If in pvm, must participate setting up virtual machine
1330 *
1331  IF( nprocs.LT.1 )
1332  $ CALL blacs_setup( iam, nprocs )
1333 *
1334 * Temporarily define blacs grid to include all processes so
1335 * information can be broadcast to all processes
1336 *
1337  CALL blacs_get( -1, 0, ictxt )
1338  CALL blacs_gridinit( ictxt, 'Row-major', 1, nprocs )
1339 *
1340 * Compute machine epsilon
1341 *
1342  eps = pdlamch( ictxt, 'eps' )
1343 *
1344  CALL dgebr2d( ictxt, 'All', ' ', 1, 1, alpha, 1, 0, 0 )
1345 *
1346  CALL igebr2d( ictxt, 'All', ' ', 2, 1, work, 2, 0, 0 )
1347  ngrids = work( 1 )
1348  nmat = work( 2 )
1349 *
1350  i = 2*ngrids + 23*nmat + nsubs + 4
1351  CALL igebr2d( ictxt, 'All', ' ', i, 1, work, i, 0, 0 )
1352 *
1353  i = 1
1354  IF( work( i ).EQ.1 ) THEN
1355  sof = .true.
1356  ELSE
1357  sof = .false.
1358  END IF
1359  i = i + 1
1360  IF( work( i ).EQ.1 ) THEN
1361  tee = .true.
1362  ELSE
1363  tee = .false.
1364  END IF
1365  i = i + 1
1366  iverb = work( i )
1367  i = i + 1
1368  igap = work( i )
1369  i = i + 1
1370  CALL icopy( ngrids, work( i ), 1, pval, 1 )
1371  i = i + ngrids
1372  CALL icopy( ngrids, work( i ), 1, qval, 1 )
1373  i = i + ngrids
1374  CALL icopy( nmat, work( i ), 1, nval, 1 )
1375  i = i + nmat
1376  CALL icopy( nmat, work( i ), 1, mxval, 1 )
1377  i = i + nmat
1378  CALL icopy( nmat, work( i ), 1, nxval, 1 )
1379  i = i + nmat
1380  CALL icopy( nmat, work( i ), 1, imbxval, 1 )
1381  i = i + nmat
1382  CALL icopy( nmat, work( i ), 1, inbxval, 1 )
1383  i = i + nmat
1384  CALL icopy( nmat, work( i ), 1, mbxval, 1 )
1385  i = i + nmat
1386  CALL icopy( nmat, work( i ), 1, nbxval, 1 )
1387  i = i + nmat
1388  CALL icopy( nmat, work( i ), 1, rscxval, 1 )
1389  i = i + nmat
1390  CALL icopy( nmat, work( i ), 1, cscxval, 1 )
1391  i = i + nmat
1392  CALL icopy( nmat, work( i ), 1, ixval, 1 )
1393  i = i + nmat
1394  CALL icopy( nmat, work( i ), 1, jxval, 1 )
1395  i = i + nmat
1396  CALL icopy( nmat, work( i ), 1, incxval, 1 )
1397  i = i + nmat
1398  CALL icopy( nmat, work( i ), 1, myval, 1 )
1399  i = i + nmat
1400  CALL icopy( nmat, work( i ), 1, nyval, 1 )
1401  i = i + nmat
1402  CALL icopy( nmat, work( i ), 1, imbyval, 1 )
1403  i = i + nmat
1404  CALL icopy( nmat, work( i ), 1, inbyval, 1 )
1405  i = i + nmat
1406  CALL icopy( nmat, work( i ), 1, mbyval, 1 )
1407  i = i + nmat
1408  CALL icopy( nmat, work( i ), 1, nbyval, 1 )
1409  i = i + nmat
1410  CALL icopy( nmat, work( i ), 1, rscyval, 1 )
1411  i = i + nmat
1412  CALL icopy( nmat, work( i ), 1, cscyval, 1 )
1413  i = i + nmat
1414  CALL icopy( nmat, work( i ), 1, iyval, 1 )
1415  i = i + nmat
1416  CALL icopy( nmat, work( i ), 1, jyval, 1 )
1417  i = i + nmat
1418  CALL icopy( nmat, work( i ), 1, incyval, 1 )
1419  i = i + nmat
1420 *
1421  DO 90 j = 1, nsubs
1422  IF( work( i ).EQ.1 ) THEN
1423  ltest( j ) = .true.
1424  ELSE
1425  ltest( j ) = .false.
1426  END IF
1427  i = i + 1
1428  90 CONTINUE
1429 *
1430  END IF
1431 *
1432  CALL blacs_gridexit( ictxt )
1433 *
1434  RETURN
1435 *
1436  100 WRITE( nout, fmt = 9997 )
1437  CLOSE( nin )
1438  IF( nout.NE.6 .AND. nout.NE.0 )
1439  $ CLOSE( nout )
1440  CALL blacs_abort( ictxt, 1 )
1441 *
1442  stop
1443 *
1444  9999 FORMAT( a )
1445  9998 FORMAT( ' Number of values of ',5a, ' is less than 1 or greater ',
1446  $ 'than ', i2 )
1447  9997 FORMAT( ' Illegal input in file ',40a,'. Aborting run.' )
1448  9996 FORMAT( a7, l2 )
1449  9995 FORMAT( ' Subprogram name ', a7, ' not recognized',
1450  $ /' ******* TESTS ABANDONED *******' )
1451  9994 FORMAT( 2x, 'Relative machine precision (eps) is taken to be ',
1452  $ e18.6 )
1453  9993 FORMAT( 2x, 'Number of Tests : ', i6 )
1454  9992 FORMAT( 2x, 'Number of process grids : ', i6 )
1455  9991 FORMAT( 2x, ' : ', 5i6 )
1456  9990 FORMAT( 2x, a1, ' : ', 5i6 )
1457  9988 FORMAT( 2x, 'Stop on failure flag : ', l6 )
1458  9987 FORMAT( 2x, 'Test for error exits flag : ', l6 )
1459  9986 FORMAT( 2x, 'Verbosity level : ', i6 )
1460  9985 FORMAT( 2x, 'Routines to be tested : ', a, a8 )
1461  9984 FORMAT( 2x, ' ', a, a8 )
1462  9983 FORMAT( 2x, 'Leading dimension gap : ', i6 )
1463  9982 FORMAT( 2x, 'Alpha : ', g16.6 )
1464 *
1465 * End of PDBLA1TSTINFO
1466 *
1467  END
1468  SUBROUTINE pdblas1tstchke( LTEST, INOUT, NPROCS )
1470 * -- PBLAS test routine (version 2.0) --
1471 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
1472 * and University of California, Berkeley.
1473 * April 1, 1998
1474 *
1475 * .. Scalar Arguments ..
1476  INTEGER INOUT, NPROCS
1477 * ..
1478 * .. Array Arguments ..
1479  LOGICAL LTEST( * )
1480 * ..
1481 *
1482 * Purpose
1483 * =======
1484 *
1485 * PDBLAS1TSTCHKE tests the error exits of the Level 1 PBLAS.
1486 *
1487 * Notes
1488 * =====
1489 *
1490 * A description vector is associated with each 2D block-cyclicly dis-
1491 * tributed matrix. This vector stores the information required to
1492 * establish the mapping between a matrix entry and its corresponding
1493 * process and memory location.
1494 *
1495 * In the following comments, the character _ should be read as
1496 * "of the distributed matrix". Let A be a generic term for any 2D
1497 * block cyclicly distributed matrix. Its description vector is DESCA:
1498 *
1499 * NOTATION STORED IN EXPLANATION
1500 * ---------------- --------------- ------------------------------------
1501 * DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
1502 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
1503 * the NPROW x NPCOL BLACS process grid
1504 * A is distributed over. The context
1505 * itself is global, but the handle
1506 * (the integer value) may vary.
1507 * M_A (global) DESCA( M_ ) The number of rows in the distribu-
1508 * ted matrix A, M_A >= 0.
1509 * N_A (global) DESCA( N_ ) The number of columns in the distri-
1510 * buted matrix A, N_A >= 0.
1511 * IMB_A (global) DESCA( IMB_ ) The number of rows of the upper left
1512 * block of the matrix A, IMB_A > 0.
1513 * INB_A (global) DESCA( INB_ ) The number of columns of the upper
1514 * left block of the matrix A,
1515 * INB_A > 0.
1516 * MB_A (global) DESCA( MB_ ) The blocking factor used to distri-
1517 * bute the last M_A-IMB_A rows of A,
1518 * MB_A > 0.
1519 * NB_A (global) DESCA( NB_ ) The blocking factor used to distri-
1520 * bute the last N_A-INB_A columns of
1521 * A, NB_A > 0.
1522 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
1523 * row of the matrix A is distributed,
1524 * NPROW > RSRC_A >= 0.
1525 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
1526 * first column of A is distributed.
1527 * NPCOL > CSRC_A >= 0.
1528 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
1529 * array storing the local blocks of
1530 * the distributed matrix A,
1531 * IF( Lc( 1, N_A ) > 0 )
1532 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
1533 * ELSE
1534 * LLD_A >= 1.
1535 *
1536 * Let K be the number of rows of a matrix A starting at the global in-
1537 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
1538 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
1539 * receive if these K rows were distributed over NPROW processes. If K
1540 * is the number of columns of a matrix A starting at the global index
1541 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
1542 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
1543 * these K columns were distributed over NPCOL processes.
1544 *
1545 * The values of Lr() and Lc() may be determined via a call to the func-
1546 * tion PB_NUMROC:
1547 * Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
1548 * Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
1549 *
1550 * Arguments
1551 * =========
1552 *
1553 * LTEST (global input) LOGICAL array
1554 * On entry, LTEST is an array of dimension at least 8 (NSUBS).
1555 * If LTEST( 1 ) is .TRUE., PDSWAP will be tested;
1556 * If LTEST( 2 ) is .TRUE., PDSCAL will be tested;
1557 * If LTEST( 3 ) is .TRUE., PDCOPY will be tested;
1558 * If LTEST( 4 ) is .TRUE., PDAXPY will be tested;
1559 * If LTEST( 5 ) is .TRUE., PDDOT will be tested;
1560 * If LTEST( 6 ) is .TRUE., PDNRM2 will be tested;
1561 * If LTEST( 7 ) is .TRUE., PDASUM will be tested;
1562 * If LTEST( 8 ) is .TRUE., PDAMAX will be tested.
1563 *
1564 * INOUT (global input) INTEGER
1565 * On entry, INOUT specifies the unit number for output file.
1566 * When INOUT is 6, output to screen, when INOUT = 0, output to
1567 * stderr. INOUT is only defined in process 0.
1568 *
1569 * NPROCS (global input) INTEGER
1570 * On entry, NPROCS specifies the total number of processes cal-
1571 * ling this routine.
1572 *
1573 * Calling sequence encodings
1574 * ==========================
1575 *
1576 * code Formal argument list Examples
1577 *
1578 * 11 (n, v1,v2) _SWAP, _COPY
1579 * 12 (n,s1, v1 ) _SCAL, _SCAL
1580 * 13 (n,s1, v1,v2) _AXPY, _DOT_
1581 * 14 (n,s1,i1,v1 ) _AMAX
1582 * 15 (n,u1, v1 ) _ASUM, _NRM2
1583 *
1584 * 21 ( trans, m,n,s1,m1,v1,s2,v2) _GEMV
1585 * 22 (uplo, n,s1,m1,v1,s2,v2) _SYMV, _HEMV
1586 * 23 (uplo,trans,diag, n, m1,v1 ) _TRMV, _TRSV
1587 * 24 ( m,n,s1,v1,v2,m1) _GER_
1588 * 25 (uplo, n,s1,v1, m1) _SYR
1589 * 26 (uplo, n,u1,v1, m1) _HER
1590 * 27 (uplo, n,s1,v1,v2,m1) _SYR2, _HER2
1591 *
1592 * 31 ( transa,transb, m,n,k,s1,m1,m2,s2,m3) _GEMM
1593 * 32 (side,uplo, m,n, s1,m1,m2,s2,m3) _SYMM, _HEMM
1594 * 33 ( uplo,trans, n,k,s1,m1, s2,m3) _SYRK
1595 * 34 ( uplo,trans, n,k,u1,m1, u2,m3) _HERK
1596 * 35 ( uplo,trans, n,k,s1,m1,m2,s2,m3) _SYR2K
1597 * 36 ( uplo,trans, n,k,s1,m1,m2,u2,m3) _HER2K
1598 * 37 ( m,n, s1,m1, s2,m3) _TRAN_
1599 * 38 (side,uplo,transa, diag,m,n, s1,m1,m2 ) _TRMM, _TRSM
1600 * 39 ( trans, m,n, s1,m1, s2,m3) _GEADD
1601 * 40 ( uplo,trans, m,n, s1,m1, s2,m3) _TRADD
1602 *
1603 * -- Written on April 1, 1998 by
1604 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
1605 *
1606 * =====================================================================
1607 *
1608 * .. Parameters ..
1609  INTEGER NSUBS
1610  PARAMETER ( NSUBS = 8 )
1611 * ..
1612 * .. Local Scalars ..
1613  logical abrtsav
1614  INTEGER I, ICTXT, MYCOL, MYROW, NPCOL, NPROW
1615 * ..
1616 * .. Local Arrays ..
1617  INTEGER SCODE( NSUBS )
1618 * ..
1619 * .. External Subroutines ..
1620  EXTERNAL blacs_get, blacs_gridexit, blacs_gridinfo,
1621  $ blacs_gridinit, pdamax, pdasum, pdaxpy, pdcopy,
1622  $ pddimee, pddot, pdnrm2, pdscal, pdswap,
1623  $ pdvecee
1624 * ..
1625 * .. Common Blocks ..
1626  LOGICAL ABRTFLG
1627  INTEGER NOUT
1628  CHARACTER*7 SNAMES( NSUBS )
1629  COMMON /SNAMEC/SNAMES
1630  COMMON /PBERRORC/NOUT, ABRTFLG
1631 * ..
1632 * .. Data Statements ..
1633  DATA SCODE/11, 12, 11, 13, 13, 15, 15, 14/
1634 * ..
1635 * .. Executable Statements ..
1636 *
1637 * Temporarily define blacs grid to include all processes so
1638 * information can be broadcast to all processes.
1639 *
1640  CALL blacs_get( -1, 0, ictxt )
1641  CALL blacs_gridinit( ictxt, 'Row-major', 1, nprocs )
1642  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
1643 *
1644 * Set ABRTFLG to FALSE so that the PBLAS error handler won't abort
1645 * on errors during these tests and set the output device unit for
1646 * it.
1647 *
1648  abrtsav = abrtflg
1649  abrtflg = .false.
1650  nout = inout
1651 *
1652 * Test PDSWAP
1653 *
1654  i = 1
1655  IF( ltest( i ) ) THEN
1656  CALL pddimee( ictxt, nout, pdswap, scode( i ), snames( i ) )
1657  CALL pdvecee( ictxt, nout, pdswap, scode( i ), snames( i ) )
1658  END IF
1659 *
1660 * Test PDSCAL
1661 *
1662  i = i + 1
1663  IF( ltest( i ) ) THEN
1664  CALL pddimee( ictxt, nout, pdscal, scode( i ), snames( i ) )
1665  CALL pdvecee( ictxt, nout, pdscal, scode( i ), snames( i ) )
1666  END IF
1667 *
1668 * Test PDCOPY
1669 *
1670  i = i + 1
1671  IF( ltest( i ) ) THEN
1672  CALL pddimee( ictxt, nout, pdcopy, scode( i ), snames( i ) )
1673  CALL pdvecee( ictxt, nout, pdcopy, scode( i ), snames( i ) )
1674  END IF
1675 *
1676 * Test PDAXPY
1677 *
1678  i = i + 1
1679  IF( ltest( i ) ) THEN
1680  CALL pddimee( ictxt, nout, pdaxpy, scode( i ), snames( i ) )
1681  CALL pdvecee( ictxt, nout, pdaxpy, scode( i ), snames( i ) )
1682  END IF
1683 *
1684 * Test PDDOT
1685 *
1686  i = i + 1
1687  IF( ltest( i ) ) THEN
1688  CALL pddimee( ictxt, nout, pddot, scode( i ), snames( i ) )
1689  CALL pdvecee( ictxt, nout, pddot, scode( i ), snames( i ) )
1690  END IF
1691 *
1692 * Test PDNRM2
1693 *
1694  i = i + 1
1695  IF( ltest( i ) ) THEN
1696  CALL pddimee( ictxt, nout, pdnrm2, scode( i ), snames( i ) )
1697  CALL pdvecee( ictxt, nout, pdnrm2, scode( i ), snames( i ) )
1698  END IF
1699 *
1700 * Test PDASUM
1701 *
1702  i = i + 1
1703  IF( ltest( i ) ) THEN
1704  CALL pddimee( ictxt, nout, pdasum, scode( i ), snames( i ) )
1705  CALL pdvecee( ictxt, nout, pdasum, scode( i ), snames( i ) )
1706  END IF
1707 *
1708 * Test PDAMAX
1709 *
1710  i = i + 1
1711  IF( ltest( i ) ) THEN
1712  CALL pddimee( ictxt, nout, pdamax, scode( i ), snames( i ) )
1713  CALL pdvecee( ictxt, nout, pdamax, scode( i ), snames( i ) )
1714  END IF
1715 *
1716  IF( myrow.EQ.0 .AND. mycol.EQ.0 )
1717  $ WRITE( nout, fmt = 9999 )
1718 *
1719  CALL blacs_gridexit( ictxt )
1720 *
1721 * Reset ABRTFLG to the value it had before calling this routine
1722 *
1723  abrtflg = abrtsav
1724 *
1725  9999 FORMAT( 2x, 'Error-exit tests completed.' )
1726 *
1727  RETURN
1728 *
1729 * End of PDBLAS1TSTCHKE
1730 *
1731  END
1732  SUBROUTINE pdchkarg1( ICTXT, NOUT, SNAME, N, ALPHA, IX, JX,
1733  $ DESCX, INCX, IY, JY, DESCY, INCY, INFO )
1735 * -- PBLAS test routine (version 2.0) --
1736 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
1737 * and University of California, Berkeley.
1738 * April 1, 1998
1739 *
1740 * .. Scalar Arguments ..
1741  INTEGER ICTXT, INCX, INCY, INFO, IX, IY, JX, JY, N,
1742  $ NOUT
1743  DOUBLE PRECISION ALPHA
1744 * ..
1745 * .. Array Arguments ..
1746  CHARACTER*(*) SNAME
1747  INTEGER DESCX( * ), DESCY( * )
1748 * ..
1749 *
1750 * Purpose
1751 * =======
1752 *
1753 * PDCHKARG1 checks the input-only arguments of the Level 1 PBLAS. When
1754 * INFO = 0, this routine makes a copy of its arguments (which are INPUT
1755 * only arguments to PBLAS routines). Otherwise, it verifies the values
1756 * of these arguments against the saved copies.
1757 *
1758 * Notes
1759 * =====
1760 *
1761 * A description vector is associated with each 2D block-cyclicly dis-
1762 * tributed matrix. This vector stores the information required to
1763 * establish the mapping between a matrix entry and its corresponding
1764 * process and memory location.
1765 *
1766 * In the following comments, the character _ should be read as
1767 * "of the distributed matrix". Let A be a generic term for any 2D
1768 * block cyclicly distributed matrix. Its description vector is DESCA:
1769 *
1770 * NOTATION STORED IN EXPLANATION
1771 * ---------------- --------------- ------------------------------------
1772 * DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
1773 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
1774 * the NPROW x NPCOL BLACS process grid
1775 * A is distributed over. The context
1776 * itself is global, but the handle
1777 * (the integer value) may vary.
1778 * M_A (global) DESCA( M_ ) The number of rows in the distribu-
1779 * ted matrix A, M_A >= 0.
1780 * N_A (global) DESCA( N_ ) The number of columns in the distri-
1781 * buted matrix A, N_A >= 0.
1782 * IMB_A (global) DESCA( IMB_ ) The number of rows of the upper left
1783 * block of the matrix A, IMB_A > 0.
1784 * INB_A (global) DESCA( INB_ ) The number of columns of the upper
1785 * left block of the matrix A,
1786 * INB_A > 0.
1787 * MB_A (global) DESCA( MB_ ) The blocking factor used to distri-
1788 * bute the last M_A-IMB_A rows of A,
1789 * MB_A > 0.
1790 * NB_A (global) DESCA( NB_ ) The blocking factor used to distri-
1791 * bute the last N_A-INB_A columns of
1792 * A, NB_A > 0.
1793 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
1794 * row of the matrix A is distributed,
1795 * NPROW > RSRC_A >= 0.
1796 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
1797 * first column of A is distributed.
1798 * NPCOL > CSRC_A >= 0.
1799 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
1800 * array storing the local blocks of
1801 * the distributed matrix A,
1802 * IF( Lc( 1, N_A ) > 0 )
1803 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
1804 * ELSE
1805 * LLD_A >= 1.
1806 *
1807 * Let K be the number of rows of a matrix A starting at the global in-
1808 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
1809 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
1810 * receive if these K rows were distributed over NPROW processes. If K
1811 * is the number of columns of a matrix A starting at the global index
1812 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
1813 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
1814 * these K columns were distributed over NPCOL processes.
1815 *
1816 * The values of Lr() and Lc() may be determined via a call to the func-
1817 * tion PB_NUMROC:
1818 * Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
1819 * Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
1820 *
1821 * Arguments
1822 * =========
1823 *
1824 * ICTXT (local input) INTEGER
1825 * On entry, ICTXT specifies the BLACS context handle, indica-
1826 * ting the global context of the operation. The context itself
1827 * is global, but the value of ICTXT is local.
1828 *
1829 * NOUT (global input) INTEGER
1830 * On entry, NOUT specifies the unit number for the output file.
1831 * When NOUT is 6, output to screen, when NOUT is 0, output to
1832 * stderr. NOUT is only defined for process 0.
1833 *
1834 * SNAME (global input) CHARACTER*(*)
1835 * On entry, SNAME specifies the subroutine name calling this
1836 * subprogram.
1837 *
1838 * N (global input) INTEGER
1839 * On entry, N specifies the length of the subvector operands.
1840 *
1841 * ALPHA (global input) DOUBLE PRECISION
1842 * On entry, ALPHA specifies the scalar alpha.
1843 *
1844 * IX (global input) INTEGER
1845 * On entry, IX specifies X's global row index, which points to
1846 * the beginning of the submatrix sub( X ).
1847 *
1848 * JX (global input) INTEGER
1849 * On entry, JX specifies X's global column index, which points
1850 * to the beginning of the submatrix sub( X ).
1851 *
1852 * DESCX (global and local input) INTEGER array
1853 * On entry, DESCX is an integer array of dimension DLEN_. This
1854 * is the array descriptor for the matrix X.
1855 *
1856 * INCX (global input) INTEGER
1857 * On entry, INCX specifies the global increment for the
1858 * elements of X. Only two values of INCX are supported in
1859 * this version, namely 1 and M_X. INCX must not be zero.
1860 *
1861 * IY (global input) INTEGER
1862 * On entry, IY specifies Y's global row index, which points to
1863 * the beginning of the submatrix sub( Y ).
1864 *
1865 * JY (global input) INTEGER
1866 * On entry, JY specifies Y's global column index, which points
1867 * to the beginning of the submatrix sub( Y ).
1868 *
1869 * DESCY (global and local input) INTEGER array
1870 * On entry, DESCY is an integer array of dimension DLEN_. This
1871 * is the array descriptor for the matrix Y.
1872 *
1873 * INCY (global input) INTEGER
1874 * On entry, INCY specifies the global increment for the
1875 * elements of Y. Only two values of INCY are supported in
1876 * this version, namely 1 and M_Y. INCY must not be zero.
1877 *
1878 * INFO (global input/global output) INTEGER
1879 * When INFO = 0 on entry, the values of the arguments which are
1880 * INPUT only arguments to a PBLAS routine are copied into sta-
1881 * tic variables and INFO is unchanged on exit. Otherwise, the
1882 * values of the arguments are compared against the saved co-
1883 * pies. In case no error has been found INFO is zero on return,
1884 * otherwise it is non zero.
1885 *
1886 * -- Written on April 1, 1998 by
1887 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
1888 *
1889 * =====================================================================
1890 *
1891 * .. Parameters ..
1892  INTEGER BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
1893  $ DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
1894  $ RSRC_
1895  PARAMETER ( BLOCK_CYCLIC_2D_INB = 2, dlen_ = 11,
1896  $ dtype_ = 1, ctxt_ = 2, m_ = 3, n_ = 4,
1897  $ imb_ = 5, inb_ = 6, mb_ = 7, nb_ = 8,
1898  $ rsrc_ = 9, csrc_ = 10, lld_ = 11 )
1899 * ..
1900 * .. Local Scalars ..
1901  INTEGER I, INCXREF, INCYREF, IXREF, IYREF, JXREF,
1902  $ JYREF, MYCOL, MYROW, NPCOL, NPROW, NREF
1903  DOUBLE PRECISION ALPHAREF
1904 * ..
1905 * .. Local Arrays ..
1906  CHARACTER*15 ARGNAME
1907  INTEGER DESCXREF( DLEN_ ), DESCYREF( DLEN_ )
1908 * ..
1909 * .. External Subroutines ..
1910  EXTERNAL blacs_gridinfo, igsum2d
1911 * ..
1912 * .. Save Statements ..
1913  SAVE
1914 * ..
1915 * .. Executable Statements ..
1916 *
1917 * Get grid parameters
1918 *
1919  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
1920 *
1921 * Check if first call. If yes, then save.
1922 *
1923  IF( info.EQ.0 ) THEN
1924 *
1925  nref = n
1926  ixref = ix
1927  jxref = jx
1928  DO 10 i = 1, dlen_
1929  descxref( i ) = descx( i )
1930  10 CONTINUE
1931  incxref = incx
1932  iyref = iy
1933  jyref = jy
1934  DO 20 i = 1, dlen_
1935  descyref( i ) = descy( i )
1936  20 CONTINUE
1937  incyref = incy
1938  alpharef = alpha
1939 *
1940  ELSE
1941 *
1942 * Test saved args. Return with first mismatch.
1943 *
1944  argname = ' '
1945  IF( n.NE.nref ) THEN
1946  WRITE( argname, fmt = '(A)' ) 'N'
1947  ELSE IF( ix.NE.ixref ) THEN
1948  WRITE( argname, fmt = '(A)' ) 'IX'
1949  ELSE IF( jx.NE.jxref ) THEN
1950  WRITE( argname, fmt = '(A)' ) 'JX'
1951  ELSE IF( descx( dtype_ ).NE.descxref( dtype_ ) ) THEN
1952  WRITE( argname, fmt = '(A)' ) 'DESCX( DTYPE_ )'
1953  ELSE IF( descx( m_ ).NE.descxref( m_ ) ) THEN
1954  WRITE( argname, fmt = '(A)' ) 'DESCX( M_ )'
1955  ELSE IF( descx( n_ ).NE.descxref( n_ ) ) THEN
1956  WRITE( argname, fmt = '(A)' ) 'DESCX( N_ )'
1957  ELSE IF( descx( imb_ ).NE.descxref( imb_ ) ) THEN
1958  WRITE( argname, fmt = '(A)' ) 'DESCX( IMB_ )'
1959  ELSE IF( descx( inb_ ).NE.descxref( inb_ ) ) THEN
1960  WRITE( argname, fmt = '(A)' ) 'DESCX( INB_ )'
1961  ELSE IF( descx( mb_ ).NE.descxref( mb_ ) ) THEN
1962  WRITE( argname, fmt = '(A)' ) 'DESCX( MB_ )'
1963  ELSE IF( descx( nb_ ).NE.descxref( nb_ ) ) THEN
1964  WRITE( argname, fmt = '(A)' ) 'DESCX( NB_ )'
1965  ELSE IF( descx( rsrc_ ).NE.descxref( rsrc_ ) ) THEN
1966  WRITE( argname, fmt = '(A)' ) 'DESCX( RSRC_ )'
1967  ELSE IF( descx( csrc_ ).NE.descxref( csrc_ ) ) THEN
1968  WRITE( argname, fmt = '(A)' ) 'DESCX( CSRC_ )'
1969  ELSE IF( descx( ctxt_ ).NE.descxref( ctxt_ ) ) THEN
1970  WRITE( argname, fmt = '(A)' ) 'DESCX( CTXT_ )'
1971  ELSE IF( descx( lld_ ).NE.descxref( lld_ ) ) THEN
1972  WRITE( argname, fmt = '(A)' ) 'DESCX( LLD_ )'
1973  ELSE IF( incx.NE.incxref ) THEN
1974  WRITE( argname, fmt = '(A)' ) 'INCX'
1975  ELSE IF( iy.NE.iyref ) THEN
1976  WRITE( argname, fmt = '(A)' ) 'IY'
1977  ELSE IF( jy.NE.jyref ) THEN
1978  WRITE( argname, fmt = '(A)' ) 'JY'
1979  ELSE IF( descy( dtype_ ).NE.descyref( dtype_ ) ) THEN
1980  WRITE( argname, fmt = '(A)' ) 'DESCY( DTYPE_ )'
1981  ELSE IF( descy( m_ ).NE.descyref( m_ ) ) THEN
1982  WRITE( argname, fmt = '(A)' ) 'DESCY( M_ )'
1983  ELSE IF( descy( n_ ).NE.descyref( n_ ) ) THEN
1984  WRITE( argname, fmt = '(A)' ) 'DESCY( N_ )'
1985  ELSE IF( descy( imb_ ).NE.descyref( imb_ ) ) THEN
1986  WRITE( argname, fmt = '(A)' ) 'DESCY( IMB_ )'
1987  ELSE IF( descy( inb_ ).NE.descyref( inb_ ) ) THEN
1988  WRITE( argname, fmt = '(A)' ) 'DESCY( INB_ )'
1989  ELSE IF( descy( mb_ ).NE.descyref( mb_ ) ) THEN
1990  WRITE( argname, fmt = '(A)' ) 'DESCY( MB_ )'
1991  ELSE IF( descy( nb_ ).NE.descyref( nb_ ) ) THEN
1992  WRITE( argname, fmt = '(A)' ) 'DESCY( NB_ )'
1993  ELSE IF( descy( rsrc_ ).NE.descyref( rsrc_ ) ) THEN
1994  WRITE( argname, fmt = '(A)' ) 'DESCY( RSRC_ )'
1995  ELSE IF( descy( csrc_ ).NE.descyref( csrc_ ) ) THEN
1996  WRITE( argname, fmt = '(A)' ) 'DESCY( CSRC_ )'
1997  ELSE IF( descy( ctxt_ ).NE.descyref( ctxt_ ) ) THEN
1998  WRITE( argname, fmt = '(A)' ) 'DESCY( CTXT_ )'
1999  ELSE IF( descy( lld_ ).NE.descyref( lld_ ) ) THEN
2000  WRITE( argname, fmt = '(A)' ) 'DESCY( LLD_ )'
2001  ELSE IF( incy.NE.incyref ) THEN
2002  WRITE( argname, fmt = '(A)' ) 'INCY'
2003  ELSE IF( alpha.NE.alpharef ) THEN
2004  WRITE( argname, fmt = '(A)' ) 'ALPHA'
2005  ELSE
2006  info = 0
2007  END IF
2008 *
2009  CALL igsum2d( ictxt, 'All', ' ', 1, 1, info, 1, -1, 0 )
2010 *
2011  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2012 *
2013  IF( info.GT.0 ) THEN
2014  WRITE( nout, fmt = 9999 ) argname, sname
2015  ELSE
2016  WRITE( nout, fmt = 9998 ) sname
2017  END IF
2018 *
2019  END IF
2020 *
2021  END IF
2022 *
2023  9999 FORMAT( 2x, ' ***** Input-only parameter check: ', a,
2024  $ ' FAILED changed ', a, ' *****' )
2025  9998 FORMAT( 2x, ' ***** Input-only parameter check: ', a,
2026  $ ' PASSED *****' )
2027 *
2028  RETURN
2029 *
2030 * End of PDCHKARG1
2031 *
2032  END
2033  LOGICAL FUNCTION pisinscope( ICTXT, N, IX, JX, DESCX, INCX )
2035 * -- PBLAS test routine (version 2.0) --
2036 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
2037 * and University of California, Berkeley.
2038 * April 1, 1998
2039 *
2040 * .. Scalar Arguments ..
2041  INTEGER ictxt, incx, ix, jx, n
2042 * ..
2043 * .. Array Arguments ..
2044  INTEGER descx( * )
2045 * ..
2046 *
2047 * Purpose
2048 * =======
2049 *
2050 * PISINSCOPE returns .TRUE. if the calling process is in the scope of
2051 * sub( X ) = X( IX+(JX-1)*DESCX(M_)+(i-1)*INCX ) and .FALSE. if it is
2052 * not. This routine is used to determine which processes should check
2053 * the answer returned by some Level 1 PBLAS routines.
2054 *
2055 * Notes
2056 * =====
2057 *
2058 * A description vector is associated with each 2D block-cyclicly dis-
2059 * tributed matrix. This vector stores the information required to
2060 * establish the mapping between a matrix entry and its corresponding
2061 * process and memory location.
2062 *
2063 * In the following comments, the character _ should be read as
2064 * "of the distributed matrix". Let A be a generic term for any 2D
2065 * block cyclicly distributed matrix. Its description vector is DESCA:
2066 *
2067 * NOTATION STORED IN EXPLANATION
2068 * ---------------- --------------- ------------------------------------
2069 * DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
2070 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
2071 * the NPROW x NPCOL BLACS process grid
2072 * A is distributed over. The context
2073 * itself is global, but the handle
2074 * (the integer value) may vary.
2075 * M_A (global) DESCA( M_ ) The number of rows in the distribu-
2076 * ted matrix A, M_A >= 0.
2077 * N_A (global) DESCA( N_ ) The number of columns in the distri-
2078 * buted matrix A, N_A >= 0.
2079 * IMB_A (global) DESCA( IMB_ ) The number of rows of the upper left
2080 * block of the matrix A, IMB_A > 0.
2081 * INB_A (global) DESCA( INB_ ) The number of columns of the upper
2082 * left block of the matrix A,
2083 * INB_A > 0.
2084 * MB_A (global) DESCA( MB_ ) The blocking factor used to distri-
2085 * bute the last M_A-IMB_A rows of A,
2086 * MB_A > 0.
2087 * NB_A (global) DESCA( NB_ ) The blocking factor used to distri-
2088 * bute the last N_A-INB_A columns of
2089 * A, NB_A > 0.
2090 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
2091 * row of the matrix A is distributed,
2092 * NPROW > RSRC_A >= 0.
2093 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
2094 * first column of A is distributed.
2095 * NPCOL > CSRC_A >= 0.
2096 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
2097 * array storing the local blocks of
2098 * the distributed matrix A,
2099 * IF( Lc( 1, N_A ) > 0 )
2100 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
2101 * ELSE
2102 * LLD_A >= 1.
2103 *
2104 * Let K be the number of rows of a matrix A starting at the global in-
2105 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
2106 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
2107 * receive if these K rows were distributed over NPROW processes. If K
2108 * is the number of columns of a matrix A starting at the global index
2109 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
2110 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
2111 * these K columns were distributed over NPCOL processes.
2112 *
2113 * The values of Lr() and Lc() may be determined via a call to the func-
2114 * tion PB_NUMROC:
2115 * Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
2116 * Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
2117 *
2118 * Arguments
2119 * =========
2120 *
2121 * ICTXT (local input) INTEGER
2122 * On entry, ICTXT specifies the BLACS context handle, indica-
2123 * ting the global context of the operation. The context itself
2124 * is global, but the value of ICTXT is local.
2125 *
2126 * N (global input) INTEGER
2127 * The length of the subvector sub( X ).
2128 *
2129 * IX (global input) INTEGER
2130 * On entry, IX specifies X's global row index, which points to
2131 * the beginning of the submatrix sub( X ).
2132 *
2133 * JX (global input) INTEGER
2134 * On entry, JX specifies X's global column index, which points
2135 * to the beginning of the submatrix sub( X ).
2136 *
2137 * DESCX (global and local input) INTEGER array
2138 * On entry, DESCX is an integer array of dimension DLEN_. This
2139 * is the array descriptor for the matrix X.
2140 *
2141 * INCX (global input) INTEGER
2142 * On entry, INCX specifies the global increment for the
2143 * elements of X. Only two values of INCX are supported in
2144 * this version, namely 1 and M_X. INCX must not be zero.
2145 *
2146 * -- Written on April 1, 1998 by
2147 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
2148 *
2149 * =====================================================================
2150 *
2151 * .. Parameters ..
2152  INTEGER block_cyclic_2d_inb, csrc_, ctxt_, dlen_,
2153  $ dtype_, imb_, inb_, lld_, mb_, m_, nb_, n_,
2154  $ rsrc_
2155  PARAMETER ( block_cyclic_2d_inb = 2, dlen_ = 11,
2156  $ dtype_ = 1, ctxt_ = 2, m_ = 3, n_ = 4,
2157  $ imb_ = 5, inb_ = 6, mb_ = 7, nb_ = 8,
2158  $ rsrc_ = 9, csrc_ = 10, lld_ = 11 )
2159 * ..
2160 * .. Local Scalars ..
2161  LOGICAL colrep, rowrep
2162  INTEGER iix, ixcol, ixrow, jjx, mycol, myrow, npcol,
2163  $ nprow
2164 * ..
2165 * .. External Subroutines ..
2166  EXTERNAL blacs_gridinfo, pb_infog2l
2167 * ..
2168 * .. Executable Statements ..
2169 *
2170  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
2171 *
2172  CALL pb_infog2l( ix, jx, descx, nprow, npcol, myrow, mycol,
2173  $ iix, jjx, ixrow, ixcol )
2174  rowrep = ( ixrow.EQ.-1 )
2175  colrep = ( ixcol.EQ.-1 )
2176 *
2177  IF( descx( m_ ).EQ.1 .AND. n.EQ.1 ) THEN
2178 *
2179 * This is the special case, find process owner of IX, JX, and
2180 * only this process is the scope.
2181 *
2182  pisinscope = ( ( ixrow.EQ.myrow .OR. rowrep ) .AND.
2183  $ ( ixcol.EQ.mycol .OR. colrep ) )
2184 *
2185  ELSE
2186 *
2187  IF( incx.EQ.descx( m_ ) ) THEN
2188 *
2189 * row vector
2190 *
2191  pisinscope = ( myrow.EQ.ixrow .OR. rowrep )
2192 *
2193  ELSE
2194 *
2195 * column vector
2196 *
2197  pisinscope = ( mycol.EQ.ixcol .OR. colrep )
2198 *
2199  END IF
2200 *
2201  END IF
2202 *
2203  RETURN
2204 *
2205 * End of PISINSCOPE
2206 *
2207  END
2208  SUBROUTINE pdblas1tstchk( ICTXT, NOUT, NROUT, N, PSCLR, PUSCLR,
2209  $ PISCLR, X, PX, IX, JX, DESCX, INCX, Y,
2210  $ PY, IY, JY, DESCY, INCY, INFO )
2212 * -- PBLAS test routine (version 2.0) --
2213 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
2214 * and University of California, Berkeley.
2215 * April 1, 1998
2216 *
2217 * .. Scalar Arguments ..
2218  INTEGER ICTXT, INCX, INCY, INFO, IX, IY, JX, JY, N,
2219  $ nout, nrout, pisclr
2220  DOUBLE PRECISION PSCLR, PUSCLR
2221 * ..
2222 * .. Array Arguments ..
2223  INTEGER DESCX( * ), DESCY( * )
2224  DOUBLE PRECISION PX( * ), PY( * ), X( * ), Y( * )
2225 * ..
2226 *
2227 * Purpose
2228 * =======
2229 *
2230 * PDBLAS1TSTCHK performs the computational tests of the Level 1 PBLAS.
2231 *
2232 * Notes
2233 * =====
2234 *
2235 * A description vector is associated with each 2D block-cyclicly dis-
2236 * tributed matrix. This vector stores the information required to
2237 * establish the mapping between a matrix entry and its corresponding
2238 * process and memory location.
2239 *
2240 * In the following comments, the character _ should be read as
2241 * "of the distributed matrix". Let A be a generic term for any 2D
2242 * block cyclicly distributed matrix. Its description vector is DESCA:
2243 *
2244 * NOTATION STORED IN EXPLANATION
2245 * ---------------- --------------- ------------------------------------
2246 * DTYPE_A (global) DESCA( DTYPE_ ) The descriptor type.
2247 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
2248 * the NPROW x NPCOL BLACS process grid
2249 * A is distributed over. The context
2250 * itself is global, but the handle
2251 * (the integer value) may vary.
2252 * M_A (global) DESCA( M_ ) The number of rows in the distribu-
2253 * ted matrix A, M_A >= 0.
2254 * N_A (global) DESCA( N_ ) The number of columns in the distri-
2255 * buted matrix A, N_A >= 0.
2256 * IMB_A (global) DESCA( IMB_ ) The number of rows of the upper left
2257 * block of the matrix A, IMB_A > 0.
2258 * INB_A (global) DESCA( INB_ ) The number of columns of the upper
2259 * left block of the matrix A,
2260 * INB_A > 0.
2261 * MB_A (global) DESCA( MB_ ) The blocking factor used to distri-
2262 * bute the last M_A-IMB_A rows of A,
2263 * MB_A > 0.
2264 * NB_A (global) DESCA( NB_ ) The blocking factor used to distri-
2265 * bute the last N_A-INB_A columns of
2266 * A, NB_A > 0.
2267 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
2268 * row of the matrix A is distributed,
2269 * NPROW > RSRC_A >= 0.
2270 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
2271 * first column of A is distributed.
2272 * NPCOL > CSRC_A >= 0.
2273 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
2274 * array storing the local blocks of
2275 * the distributed matrix A,
2276 * IF( Lc( 1, N_A ) > 0 )
2277 * LLD_A >= MAX( 1, Lr( 1, M_A ) )
2278 * ELSE
2279 * LLD_A >= 1.
2280 *
2281 * Let K be the number of rows of a matrix A starting at the global in-
2282 * dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
2283 * that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
2284 * receive if these K rows were distributed over NPROW processes. If K
2285 * is the number of columns of a matrix A starting at the global index
2286 * JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
2287 * lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
2288 * these K columns were distributed over NPCOL processes.
2289 *
2290 * The values of Lr() and Lc() may be determined via a call to the func-
2291 * tion PB_NUMROC:
2292 * Lr( IA, K ) = PB_NUMROC( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
2293 * Lc( JA, K ) = PB_NUMROC( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
2294 *
2295 * Arguments
2296 * =========
2297 *
2298 * ICTXT (local input) INTEGER
2299 * On entry, ICTXT specifies the BLACS context handle, indica-
2300 * ting the global context of the operation. The context itself
2301 * is global, but the value of ICTXT is local.
2302 *
2303 * NOUT (global input) INTEGER
2304 * On entry, NOUT specifies the unit number for the output file.
2305 * When NOUT is 6, output to screen, when NOUT is 0, output to
2306 * stderr. NOUT is only defined for process 0.
2307 *
2308 * NROUT (global input) INTEGER
2309 * On entry, NROUT specifies which routine will be tested as
2310 * follows:
2311 * If NROUT = 1, PDSWAP will be tested;
2312 * else if NROUT = 2, PDSCAL will be tested;
2313 * else if NROUT = 3, PDCOPY will be tested;
2314 * else if NROUT = 4, PDAXPY will be tested;
2315 * else if NROUT = 5, PDDOT will be tested;
2316 * else if NROUT = 6, PDNRM2 will be tested;
2317 * else if NROUT = 7, PDASUM will be tested;
2318 * else if NROUT = 8, PDAMAX will be tested.
2319 *
2320 * N (global input) INTEGER
2321 * On entry, N specifies the length of the subvector operands.
2322 *
2323 * PSCLR (global input) DOUBLE PRECISION
2324 * On entry, depending on the value of NROUT, PSCLR specifies
2325 * the scalar ALPHA, or the output scalar returned by the PBLAS,
2326 * i.e., the dot product, the 2-norm, the absolute sum or the
2327 * value of AMAX.
2328 *
2329 * PUSCLR (global input) DOUBLE PRECISION
2330 * On entry, PUSCLR specifies the real part of the scalar ALPHA
2331 * used by the real scaling, the 2-norm, or the absolute sum
2332 * routines. PUSCLR is not used in the real versions of this
2333 * routine.
2334 *
2335 * PISCLR (global input) DOUBLE PRECISION
2336 * On entry, PISCLR specifies the value of the global index re-
2337 * turned by PDAMAX, otherwise PISCLR is not used.
2338 *
2339 * X (local input/local output) DOUBLE PRECISION array
2340 * On entry, X is an array of dimension (DESCX( M_ ),*). This
2341 * array contains a local copy of the initial entire matrix PX.
2342 *
2343 * PX (local input) DOUBLE PRECISION array
2344 * On entry, PX is an array of dimension (DESCX( LLD_ ),*). This
2345 * array contains the local entries of the matrix PX.
2346 *
2347 * IX (global input) INTEGER
2348 * On entry, IX specifies X's global row index, which points to
2349 * the beginning of the submatrix sub( X ).
2350 *
2351 * JX (global input) INTEGER
2352 * On entry, JX specifies X's global column index, which points
2353 * to the beginning of the submatrix sub( X ).
2354 *
2355 * DESCX (global and local input) INTEGER array
2356 * On entry, DESCX is an integer array of dimension DLEN_. This
2357 * is the array descriptor for the matrix X.
2358 *
2359 * INCX (global input) INTEGER
2360 * On entry, INCX specifies the global increment for the
2361 * elements of X. Only two values of INCX are supported in
2362 * this version, namely 1 and M_X. INCX must not be zero.
2363 *
2364 * Y (local input/local output) DOUBLE PRECISION array
2365 * On entry, Y is an array of dimension (DESCY( M_ ),*). This
2366 * array contains a local copy of the initial entire matrix PY.
2367 *
2368 * PY (local input) DOUBLE PRECISION array
2369 * On entry, PY is an array of dimension (DESCY( LLD_ ),*). This
2370 * array contains the local entries of the matrix PY.
2371 *
2372 * IY (global input) INTEGER
2373 * On entry, IY specifies Y's global row index, which points to
2374 * the beginning of the submatrix sub( Y ).
2375 *
2376 * JY (global input) INTEGER
2377 * On entry, JY specifies Y's global column index, which points
2378 * to the beginning of the submatrix sub( Y ).
2379 *
2380 * DESCY (global and local input) INTEGER array
2381 * On entry, DESCY is an integer array of dimension DLEN_. This
2382 * is the array descriptor for the matrix Y.
2383 *
2384 * INCY (global input) INTEGER
2385 * On entry, INCY specifies the global increment for the
2386 * elements of Y. Only two values of INCY are supported in
2387 * this version, namely 1 and M_Y. INCY must not be zero.
2388 *
2389 * INFO (global output) INTEGER
2390 * On exit, if INFO = 0, no error has been found, otherwise
2391 * if( MOD( INFO, 2 ) = 1 ) then an error on X has been found,
2392 * if( MOD( INFO/2, 2 ) = 1 ) then an error on Y has been found.
2393 *
2394 * -- Written on April 1, 1998 by
2395 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
2396 *
2397 * =====================================================================
2398 *
2399 * .. Parameters ..
2400  DOUBLE PRECISION ZERO
2401  PARAMETER ( ZERO = 0.0d+0 )
2402  INTEGER BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
2403  $ DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
2404  $ RSRC_
2405  PARAMETER ( BLOCK_CYCLIC_2D_INB = 2, dlen_ = 11,
2406  $ dtype_ = 1, ctxt_ = 2, m_ = 3, n_ = 4,
2407  $ imb_ = 5, inb_ = 6, mb_ = 7, nb_ = 8,
2408  $ rsrc_ = 9, csrc_ = 10, lld_ = 11 )
2409 * ..
2410 * .. Local Scalars ..
2411  LOGICAL COLREP, INXSCOPE, INYSCOPE, ROWREP
2412  INTEGER I, IB, ICURCOL, ICURROW, IDUMM, IIX, IIY, IN,
2413  $ ioffx, ioffy, isclr, ixcol, ixrow, iycol,
2414  $ iyrow, j, jb, jjx, jjy, jn, kk, ldx, ldy,
2415  $ mycol, myrow, npcol, nprow
2416  DOUBLE PRECISION ERR, ERRMAX, PREC, SCLR, USCLR
2417 * ..
2418 * .. Local Arrays ..
2419  INTEGER IERR( 6 )
2420  CHARACTER*5 ARGIN1, ARGIN2, ARGOUT1, ARGOUT2
2421 * ..
2422 * .. External Subroutines ..
2423  EXTERNAL blacs_gridinfo, dcopy, dswap, igamx2d,
2426 * ..
2427 * .. External Functions ..
2428  LOGICAL PISINSCOPE
2429  INTEGER IDAMAX
2430  DOUBLE PRECISION PDLAMCH
2431  EXTERNAL idamax, pdlamch, pisinscope
2432 * ..
2433 * .. Intrinsic Functions ..
2434  INTRINSIC min
2435 * ..
2436 * .. Executable Statements ..
2437 *
2438  info = 0
2439 *
2440 * Quick return if possible
2441 *
2442  IF( n.LE.0 )
2443  $ RETURN
2444 *
2445  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
2446 *
2447  argin1 = ' '
2448  argin2 = ' '
2449  argout1 = ' '
2450  argout2 = ' '
2451  DO 10 i = 1, 6
2452  ierr( i ) = 0
2453  10 CONTINUE
2454 *
2455  prec = pdlamch( ictxt, 'precision' )
2456 *
2457  IF( nrout.EQ.1 ) THEN
2458 *
2459 * Test PDSWAP
2460 *
2461  ioffx = ix + ( jx - 1 ) * descx( m_ )
2462  ioffy = iy + ( jy - 1 ) * descy( m_ )
2463  CALL dswap( n, x( ioffx ), incx, y( ioffy ), incy )
2464  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2465  $ ierr( 1 ) )
2466  CALL pdchkvin( errmax, n, y, py, iy, jy, descy, incy,
2467  $ ierr( 2 ) )
2468 *
2469  ELSE IF( nrout.EQ.2 ) THEN
2470 *
2471 * Test PDSCAL
2472 *
2473  ldx = descx( lld_ )
2474  ioffx = ix + ( jx - 1 ) * descx( m_ )
2475  CALL pb_infog2l( ix, jx, descx, nprow, npcol, myrow, mycol,
2476  $ iix, jjx, ixrow, ixcol )
2477  icurrow = ixrow
2478  icurcol = ixcol
2479  rowrep = ( ixrow.EQ.-1 )
2480  colrep = ( ixcol.EQ.-1 )
2481 *
2482  IF( incx.EQ.descx( m_ ) ) THEN
2483 *
2484 * sub( X ) is a row vector
2485 *
2486  jb = descx( inb_ ) - jx + 1
2487  IF( jb.LE.0 )
2488  $ jb = ( (-jb ) / descx( nb_ ) + 1 ) * descx( nb_ ) + jb
2489  jb = min( jb, n )
2490  jn = jx + jb - 1
2491 *
2492  DO 20 j = jx, jn
2493 *
2494  CALL pderrscal( err, psclr, x( ioffx ), prec )
2495 *
2496  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2497  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2498  IF( abs( px( iix+(jjx-1)*ldx ) - x( ioffx ) ).GT.
2499  $ err )
2500  $ ierr( 1 ) = 1
2501  jjx = jjx + 1
2502  END IF
2503 *
2504  ioffx = ioffx + incx
2505 *
2506  20 CONTINUE
2507 *
2508  icurcol = mod( icurcol+1, npcol )
2509 *
2510  DO 40 j = jn+1, jx+n-1, descx( nb_ )
2511  jb = min( jx+n-j, descx( nb_ ) )
2512 *
2513  DO 30 kk = 0, jb-1
2514 *
2515  CALL pderrscal( err, psclr, x( ioffx ), prec )
2516 *
2517  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2518  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2519  IF( abs( px( iix+(jjx-1)*ldx ) - x( ioffx ) ).GT.
2520  $ err )
2521  $ ierr( 1 ) = 1
2522  jjx = jjx + 1
2523  END IF
2524 *
2525  ioffx = ioffx + incx
2526 *
2527  30 CONTINUE
2528 *
2529  icurcol = mod( icurcol+1, npcol )
2530 *
2531  40 CONTINUE
2532 *
2533  ELSE
2534 *
2535 * sub( X ) is a column vector
2536 *
2537  ib = descx( imb_ ) - ix + 1
2538  IF( ib.LE.0 )
2539  $ ib = ( (-ib ) / descx( mb_ ) + 1 ) * descx( mb_ ) + ib
2540  ib = min( ib, n )
2541  in = ix + ib - 1
2542 *
2543  DO 50 i = ix, in
2544 *
2545  CALL pderrscal( err, psclr, x( ioffx ), prec )
2546 *
2547  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2548  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2549  IF( abs( px( iix+(jjx-1)*ldx ) - x( ioffx ) ).GT.
2550  $ err )
2551  $ ierr( 1 ) = 1
2552  iix = iix + 1
2553  END IF
2554 *
2555  ioffx = ioffx + incx
2556 *
2557  50 CONTINUE
2558 *
2559  icurrow = mod( icurrow+1, nprow )
2560 *
2561  DO 70 i = in+1, ix+n-1, descx( mb_ )
2562  ib = min( ix+n-i, descx( mb_ ) )
2563 *
2564  DO 60 kk = 0, ib-1
2565 *
2566  CALL pderrscal( err, psclr, x( ioffx ), prec )
2567 *
2568  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2569  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2570  IF( abs( px( iix+(jjx-1)*ldx ) - x( ioffx ) ).GT.
2571  $ err )
2572  $ ierr( 1 ) = 1
2573  iix = iix + 1
2574  END IF
2575 *
2576  ioffx = ioffx + incx
2577  60 CONTINUE
2578 *
2579  icurrow = mod( icurrow+1, nprow )
2580 *
2581  70 CONTINUE
2582 *
2583  END IF
2584 *
2585  ELSE IF( nrout.EQ.3 ) THEN
2586 *
2587 * Test PDCOPY
2588 *
2589  ioffx = ix + ( jx - 1 ) * descx( m_ )
2590  ioffy = iy + ( jy - 1 ) * descy( m_ )
2591  CALL dcopy( n, x( ioffx ), incx, y( ioffy ), incy )
2592  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2593  $ ierr( 1 ) )
2594  CALL pdchkvin( errmax, n, y, py, iy, jy, descy, incy,
2595  $ ierr( 2 ) )
2596 *
2597  ELSE IF( nrout.EQ.4 ) THEN
2598 *
2599 * Test PDAXPY
2600 *
2601  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2602  $ ierr( 1 ) )
2603  ldy = descy( lld_ )
2604  ioffx = ix + ( jx - 1 ) * descx( m_ )
2605  ioffy = iy + ( jy - 1 ) * descy( m_ )
2606  CALL pb_infog2l( iy, jy, descy, nprow, npcol, myrow, mycol,
2607  $ iiy, jjy, iyrow, iycol )
2608  icurrow = iyrow
2609  icurcol = iycol
2610  rowrep = ( iyrow.EQ.-1 )
2611  colrep = ( iycol.EQ.-1 )
2612 *
2613  IF( incy.EQ.descy( m_ ) ) THEN
2614 *
2615 * sub( Y ) is a row vector
2616 *
2617  jb = descy( inb_ ) - jy + 1
2618  IF( jb.LE.0 )
2619  $ jb = ( (-jb ) / descy( nb_ ) + 1 ) * descy( nb_ ) + jb
2620  jb = min( jb, n )
2621  jn = jy + jb - 1
2622 *
2623  DO 140 j = jy, jn
2624 *
2625  CALL pderraxpy( err, psclr, x( ioffx ), y( ioffy ),
2626  $ prec )
2627 *
2628  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2629  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2630  IF( abs( py( iiy+(jjy-1)*ldy ) - y( ioffy ) ).GT.
2631  $ err ) THEN
2632  ierr( 2 ) = 1
2633  END IF
2634  jjy = jjy + 1
2635  END IF
2636 *
2637  ioffx = ioffx + incx
2638  ioffy = ioffy + incy
2639 *
2640  140 CONTINUE
2641 *
2642  icurcol = mod( icurcol+1, npcol )
2643 *
2644  DO 160 j = jn+1, jy+n-1, descy( nb_ )
2645  jb = min( jy+n-j, descy( nb_ ) )
2646 *
2647  DO 150 kk = 0, jb-1
2648 *
2649  CALL pderraxpy( err, psclr, x( ioffx ), y( ioffy ),
2650  $ prec )
2651 *
2652  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2653  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2654  IF( abs( py( iiy+(jjy-1)*ldy ) - y( ioffy ) ).GT.
2655  $ err ) THEN
2656  ierr( 2 ) = 1
2657  END IF
2658  jjy = jjy + 1
2659  END IF
2660 *
2661  ioffx = ioffx + incx
2662  ioffy = ioffy + incy
2663 *
2664  150 CONTINUE
2665 *
2666  icurcol = mod( icurcol+1, npcol )
2667 *
2668  160 CONTINUE
2669 *
2670  ELSE
2671 *
2672 * sub( Y ) is a column vector
2673 *
2674  ib = descy( imb_ ) - iy + 1
2675  IF( ib.LE.0 )
2676  $ ib = ( (-ib ) / descy( mb_ ) + 1 ) * descy( mb_ ) + ib
2677  ib = min( ib, n )
2678  in = iy + ib - 1
2679 *
2680  DO 170 i = iy, in
2681 *
2682  CALL pderraxpy( err, psclr, x( ioffx ), y( ioffy ),
2683  $ prec )
2684 *
2685  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2686  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2687  IF( abs( py( iiy+(jjy-1)*ldy ) - y( ioffy ) ).GT.
2688  $ err ) THEN
2689  ierr( 2 ) = 1
2690  END IF
2691  iiy = iiy + 1
2692  END IF
2693 *
2694  ioffx = ioffx + incx
2695  ioffy = ioffy + incy
2696 *
2697  170 CONTINUE
2698 *
2699  icurrow = mod( icurrow+1, nprow )
2700 *
2701  DO 190 i = in+1, iy+n-1, descy( mb_ )
2702  ib = min( iy+n-i, descy( mb_ ) )
2703 *
2704  DO 180 kk = 0, ib-1
2705 *
2706  CALL pderraxpy( err, psclr, x( ioffx ), y( ioffy ),
2707  $ prec )
2708 *
2709  IF( ( myrow.EQ.icurrow .OR. rowrep ) .AND.
2710  $ ( mycol.EQ.icurcol .OR. colrep ) ) THEN
2711  IF( abs( py( iiy+(jjy-1)*ldy ) - y( ioffy ) ).GT.
2712  $ err ) THEN
2713  ierr( 2 ) = 1
2714  END IF
2715  iiy = iiy + 1
2716  END IF
2717 *
2718  ioffx = ioffx + incx
2719  ioffy = ioffy + incy
2720 *
2721  180 CONTINUE
2722 *
2723  icurrow = mod( icurrow+1, nprow )
2724 *
2725  190 CONTINUE
2726 *
2727  END IF
2728 *
2729  ELSE IF( nrout.EQ.5 ) THEN
2730 *
2731 * Test PDDOT
2732 *
2733  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2734  $ ierr( 1 ) )
2735  CALL pdchkvin( errmax, n, y, py, iy, jy, descy, incy,
2736  $ ierr( 2 ) )
2737  ioffx = ix + ( jx - 1 ) * descx( m_ )
2738  ioffy = iy + ( jy - 1 ) * descy( m_ )
2739  CALL pderrdot( err, n, sclr, x( ioffx ), incx, y( ioffy ),
2740  $ incy, prec )
2741  inxscope = pisinscope( ictxt, n, ix, jx, descx, incx )
2742  inyscope = pisinscope( ictxt, n, iy, jy, descy, incy )
2743  IF( inxscope.OR.inyscope ) THEN
2744  IF( abs( psclr - sclr ).GT.err ) THEN
2745  ierr( 3 ) = 1
2746  WRITE( argin1, fmt = '(A)' ) 'DOT'
2747  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2748  WRITE( nout, fmt = 9998 ) argin1
2749  WRITE( nout, fmt = 9996 ) sclr, psclr
2750  END IF
2751  END IF
2752  ELSE
2753  sclr = zero
2754  IF( psclr.NE.sclr ) THEN
2755  ierr( 4 ) = 1
2756  WRITE( argout1, fmt = '(A)' ) 'DOT'
2757  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2758  WRITE( nout, fmt = 9997 ) argout1
2759  WRITE( nout, fmt = 9996 ) sclr, psclr
2760  END IF
2761  END IF
2762  END IF
2763 *
2764  ELSE IF( nrout.EQ.6 ) THEN
2765 *
2766 * Test PDNRM2
2767 *
2768  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2769  $ ierr( 1 ) )
2770  ioffx = ix + ( jx - 1 ) * descx( m_ )
2771  CALL pderrnrm2( err, n, usclr, x( ioffx ), incx, prec )
2772  IF( pisinscope( ictxt, n, ix, jx, descx, incx ) ) THEN
2773  IF( abs( pusclr - usclr ).GT.err ) THEN
2774  ierr( 3 ) = 1
2775  WRITE( argin1, fmt = '(A)' ) 'NRM2'
2776  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2777  WRITE( nout, fmt = 9998 ) argin1
2778  WRITE( nout, fmt = 9996 ) usclr, pusclr
2779  END IF
2780  END IF
2781  ELSE
2782  usclr = zero
2783  IF( pusclr.NE.usclr ) THEN
2784  ierr( 4 ) = 1
2785  WRITE( argout1, fmt = '(A)' ) 'NRM2'
2786  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2787  WRITE( nout, fmt = 9997 ) argout1
2788  WRITE( nout, fmt = 9996 ) usclr, pusclr
2789  END IF
2790  END IF
2791  END IF
2792 *
2793  ELSE IF( nrout.EQ.7 ) THEN
2794 *
2795 * Test PDASUM
2796 *
2797  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2798  $ ierr( 1 ) )
2799  ioffx = ix + ( jx - 1 ) * descx( m_ )
2800  CALL pderrasum( err, n, usclr, x( ioffx ), incx, prec )
2801  IF( pisinscope( ictxt, n, ix, jx, descx, incx ) ) THEN
2802  IF( abs( pusclr - usclr ) .GT. err ) THEN
2803  ierr( 3 ) = 1
2804  WRITE( argin1, fmt = '(A)' ) 'ASUM'
2805  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2806  WRITE( nout, fmt = 9998 ) argin1
2807  WRITE( nout, fmt = 9996 ) usclr, pusclr
2808  END IF
2809  END IF
2810  ELSE
2811  usclr = zero
2812  IF( pusclr.NE.usclr ) THEN
2813  ierr( 4 ) = 1
2814  WRITE( argout1, fmt = '(A)' ) 'ASUM'
2815  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2816  WRITE( nout, fmt = 9997 ) argout1
2817  WRITE( nout, fmt = 9996 ) usclr, pusclr
2818  END IF
2819  END IF
2820  END IF
2821 *
2822  ELSE IF( nrout.EQ.8 ) THEN
2823 *
2824 * Test PDAMAX
2825 *
2826  CALL pdchkvin( errmax, n, x, px, ix, jx, descx, incx,
2827  $ ierr( 1 ) )
2828  ioffx = ix + ( jx - 1 ) * descx( m_ )
2829  IF( pisinscope( ictxt, n, ix, jx, descx, incx ) ) THEN
2830  isclr = idamax( n, x( ioffx ), incx )
2831  IF( n.LT.1 ) THEN
2832  sclr = zero
2833  ELSE IF( ( incx.EQ.1 ).AND.( descx( m_ ).EQ.1 ).AND.
2834  $ ( n.EQ.1 ) ) THEN
2835  isclr = jx
2836  sclr = x( ioffx )
2837  ELSE IF( incx.EQ.descx( m_ ) ) THEN
2838  isclr = jx + isclr - 1
2839  sclr = x( ix + ( isclr - 1 ) * descx( m_ ) )
2840  ELSE
2841  isclr = ix + isclr - 1
2842  sclr = x( isclr + ( jx - 1 ) * descx( m_ ) )
2843  END IF
2844 *
2845  IF( psclr.NE.sclr ) THEN
2846  ierr( 3 ) = 1
2847  WRITE( argin1, fmt = '(A)' ) 'AMAX'
2848  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2849  WRITE( nout, fmt = 9998 ) argin1
2850  WRITE( nout, fmt = 9996 ) sclr, psclr
2851  END IF
2852  END IF
2853 *
2854  IF( pisclr.NE.isclr ) THEN
2855  ierr( 5 ) = 1
2856  WRITE( argin2, fmt = '(A)' ) 'INDX'
2857  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2858  WRITE( nout, fmt = 9998 ) argin2
2859  WRITE( nout, fmt = 9995 ) isclr, pisclr
2860  END IF
2861  END IF
2862  ELSE
2863  isclr = 0
2864  sclr = zero
2865  IF( psclr.NE.sclr ) THEN
2866  ierr( 4 ) = 1
2867  WRITE( argout1, fmt = '(A)' ) 'AMAX'
2868  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2869  WRITE( nout, fmt = 9997 ) argout1
2870  WRITE( nout, fmt = 9996 ) sclr, psclr
2871  END IF
2872  END IF
2873  IF( pisclr.NE.isclr ) THEN
2874  ierr( 6 ) = 1
2875  WRITE( argout2, fmt = '(A)' ) 'INDX'
2876  IF( myrow.EQ.0 .AND. mycol.EQ.0 ) THEN
2877  WRITE( nout, fmt = 9997 ) argout2
2878  WRITE( nout, fmt = 9995 ) isclr, pisclr
2879  END IF
2880  END IF
2881  END IF
2882 *
2883  END IF
2884 *
2885 * Find IERR across all processes
2886 *
2887  CALL igamx2d( ictxt, 'All', ' ', 6, 1, ierr, 6, idumm, idumm, -1,
2888  $ -1, 0 )
2889 *
2890 * Encode the errors found in INFO
2891 *
2892  IF( ierr( 1 ).NE.0 ) THEN
2893  info = info + 1
2894  IF( myrow.EQ.0 .AND. mycol.EQ.0 )
2895  $ WRITE( nout, fmt = 9999 ) 'X'
2896  END IF
2897 *
2898  IF( ierr( 2 ).NE.0 ) THEN
2899  info = info + 2
2900  IF( myrow.EQ.0 .AND. mycol.EQ.0 )
2901  $ WRITE( nout, fmt = 9999 ) 'Y'
2902  END IF
2903 *
2904  IF( ierr( 3 ).NE.0 )
2905  $ info = info + 4
2906 *
2907  IF( ierr( 4 ).NE.0 )
2908  $ info = info + 8
2909 *
2910  IF( ierr( 5 ).NE.0 )
2911  $ info = info + 16
2912 *
2913  IF( ierr( 6 ).NE.0 )
2914  $ info = info + 32
2915 *
2916  9999 FORMAT( 2x, ' ***** ERROR: Vector operand ', a,
2917  $ ' is incorrect.' )
2918  9998 FORMAT( 2x, ' ***** ERROR: Output scalar result ', a,
2919  $ ' in scope is incorrect.' )
2920  9997 FORMAT( 2x, ' ***** ERROR: Output scalar result ', a,
2921  $ ' out of scope is incorrect.' )
2922  9996 FORMAT( 2x, ' ***** Expected value is: ', d30.18, /2x,
2923  $ ' Obtained value is: ', d30.18 )
2924  9995 FORMAT( 2x, ' ***** Expected value is: ', i6, /2x,
2925  $ ' Obtained value is: ', i6 )
2926 *
2927  RETURN
2928 *
2929 * End of PDBLAS1TSTCHK
2930 *
2931  END
2932  SUBROUTINE pderrdot( ERRBND, N, SCLR, X, INCX, Y, INCY, PREC )
2934 * -- PBLAS test routine (version 2.0) --
2935 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
2936 * and University of California, Berkeley.
2937 * April 1, 1998
2938 *
2939 * .. Scalar Arguments ..
2940  INTEGER INCX, INCY, N
2941  DOUBLE PRECISION ERRBND, PREC, SCLR
2942 * ..
2943 * .. Array Arguments ..
2944  DOUBLE PRECISION X( * ), Y( * )
2945 * ..
2946 *
2947 * Purpose
2948 * =======
2949 *
2950 * PDERRDOT serially computes the dot product X**T * Y and returns a
2951 * scaled relative acceptable error bound on the result.
2952 *
2953 * Notes
2954 * =====
2955 *
2956 * If dot1 = SCLR and dot2 are two different computed results, and dot1
2957 * is being assumed to be correct, we require
2958 *
2959 * abs( dot1 - dot2 ) <= ERRBND = ERRFACT * abs( dot1 ),
2960 *
2961 * where ERRFACT is computed as the maximum of the positive and negative
2962 * partial sums multiplied by a constant proportional to the machine
2963 * precision.
2964 *
2965 * Arguments
2966 * =========
2967 *
2968 * ERRBND (global output) DOUBLE PRECISION
2969 * On exit, ERRBND specifies the scaled relative acceptable er-
2970 * ror bound.
2971 *
2972 * N (global input) INTEGER
2973 * On entry, N specifies the length of the vector operands.
2974 *
2975 * SCLR (global output) DOUBLE PRECISION
2976 * On exit, SCLR specifies the dot product of the two vectors
2977 * X and Y.
2978 *
2979 * X (global input) DOUBLE PRECISION array
2980 * On entry, X is an array of dimension at least
2981 * ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremen-
2982 * ted array X must contain the vector x.
2983 *
2984 * INCX (global input) INTEGER.
2985 * On entry, INCX specifies the increment for the elements of X.
2986 * INCX must not be zero.
2987 *
2988 * Y (global input) DOUBLE PRECISION array
2989 * On entry, Y is an array of dimension at least
2990 * ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremen-
2991 * ted array Y must contain the vector y.
2992 *
2993 * INCY (global input) INTEGER.
2994 * On entry, INCY specifies the increment for the elements of Y.
2995 * INCY must not be zero.
2996 *
2997 * PREC (global input) DOUBLE PRECISION
2998 * On entry, PREC specifies the machine precision.
2999 *
3000 * -- Written on April 1, 1998 by
3001 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
3002 *
3003 * =====================================================================
3004 *
3005 * .. Parameters ..
3006  DOUBLE PRECISION ONE, TWO, ZERO
3007  PARAMETER ( ONE = 1.0d+0, two = 2.0d+0,
3008  $ zero = 0.0d+0 )
3009 * ..
3010 * .. Local Scalars ..
3011  INTEGER I, IX, IY
3012  DOUBLE PRECISION ADDBND, FACT, SUMNEG, SUMPOS, TMP
3013 * ..
3014 * .. Intrinsic Functions ..
3015  INTRINSIC ABS, MAX
3016 * ..
3017 * .. Executable Statements ..
3018 *
3019  ix = 1
3020  iy = 1
3021  sclr = zero
3022  sumpos = zero
3023  sumneg = zero
3024  fact = two * ( one + prec )
3025  addbnd = two * two * two * prec
3026 *
3027  DO 10 i = 1, n
3028  tmp = x( ix ) * y( iy )
3029  sclr = sclr + tmp
3030  IF( tmp.GE.zero ) THEN
3031  sumpos = sumpos + tmp * fact
3032  ELSE
3033  sumneg = sumneg - tmp * fact
3034  END IF
3035  ix = ix + incx
3036  iy = iy + incy
3037  10 CONTINUE
3038 *
3039  errbnd = addbnd * max( sumpos, sumneg )
3040 *
3041  RETURN
3042 *
3043 * End of PDERRDOT
3044 *
3045  END
3046  SUBROUTINE pderrnrm2( ERRBND, N, USCLR, X, INCX, PREC )
3048 * -- PBLAS test routine (version 2.0) --
3049 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
3050 * and University of California, Berkeley.
3051 * April 1, 1998
3052 *
3053 * .. Scalar Arguments ..
3054  INTEGER INCX, N
3055  DOUBLE PRECISION ERRBND, PREC, USCLR
3056 * ..
3057 * .. Array Arguments ..
3058  DOUBLE PRECISION X( * )
3059 * ..
3060 *
3061 * Purpose
3062 * =======
3063 *
3064 * PDERRNRM2 serially computes the 2-norm the vector X and returns a
3065 * scaled relative acceptable error bound on the result.
3066 *
3067 * Notes
3068 * =====
3069 *
3070 * If norm1 = SCLR and norm2 are two different computed results, and
3071 * norm1 being assumed to be correct, we require
3072 *
3073 * abs( norm1 - norm2 ) <= ERRBND = ERRFACT * abs( norm1 ),
3074 *
3075 * where ERRFACT is computed as the maximum of the positive and negative
3076 * partial sums multiplied by a constant proportional to the machine
3077 * precision.
3078 *
3079 * Arguments
3080 * =========
3081 *
3082 * ERRBND (global output) DOUBLE PRECISION
3083 * On exit, ERRBND specifies the scaled relative acceptable er-
3084 * ror bound.
3085 *
3086 * N (global input) INTEGER
3087 * On entry, N specifies the length of the vector operand.
3088 *
3089 * USCLR (global output) DOUBLE PRECISION
3090 * On exit, USCLR specifies the 2-norm of the vector X.
3091 *
3092 * X (global input) DOUBLE PRECISION array
3093 * On entry, X is an array of dimension at least
3094 * ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremen-
3095 * ted array X must contain the vector x.
3096 *
3097 * INCX (global input) INTEGER.
3098 * On entry, INCX specifies the increment for the elements of X.
3099 * INCX must not be zero.
3100 *
3101 * PREC (global input) DOUBLE PRECISION
3102 * On entry, PREC specifies the machine precision.
3103 *
3104 * -- Written on April 1, 1998 by
3105 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
3106 *
3107 * =====================================================================
3108 *
3109 * .. Parameters ..
3110  DOUBLE PRECISION ONE, TWO, ZERO
3111  PARAMETER ( ONE = 1.0d+0, two = 2.0d+0,
3112  $ zero = 0.0d+0 )
3113 * ..
3114 * .. Local Scalars ..
3115  INTEGER IX
3116  DOUBLE PRECISION ABSXI, ADDBND, FACT, SCALE, SSQ, SUMSCA, SUMSSQ
3117 * ..
3118 * .. Intrinsic Functions ..
3119  INTRINSIC ABS
3120 * ..
3121 * .. Executable Statements ..
3122 *
3123  usclr = zero
3124  sumssq = one
3125  sumsca = zero
3126  addbnd = two * two * two * prec
3127  fact = one + two * ( ( one + prec )**3 - one )
3128 *
3129  scale = zero
3130  ssq = one
3131  DO 10 ix = 1, 1 + ( n - 1 )*incx, incx
3132  IF( x( ix ).NE.zero ) THEN
3133  absxi = abs( x( ix ) )
3134  IF( scale.LT.absxi )THEN
3135  sumssq = one + ( ssq*( scale/absxi )**2 ) * fact
3136  errbnd = addbnd * sumssq
3137  sumssq = sumssq + errbnd
3138  ssq = one + ssq*( scale/absxi )**2
3139  sumsca = absxi
3140  scale = absxi
3141  ELSE
3142  sumssq = ssq + ( ( absxi/scale )**2 ) * fact
3143  errbnd = addbnd * sumssq
3144  sumssq = sumssq + errbnd
3145  ssq = ssq + ( absxi/scale )**2
3146  END IF
3147  END IF
3148  10 CONTINUE
3149 *
3150  usclr = scale * sqrt( ssq )
3151 *
3152 * Error on square root
3153 *
3154  errbnd = sqrt( sumssq ) * ( one + two * ( 1.00001d+0 * prec ) )
3155 *
3156  errbnd = ( sumsca * errbnd ) - usclr
3157 *
3158  RETURN
3159 *
3160 * End of PDERRNRM2
3161 *
3162  END
3163  SUBROUTINE pderrasum( ERRBND, N, USCLR, X, INCX, PREC )
3165 * -- PBLAS test routine (version 2.0) --
3166 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
3167 * and University of California, Berkeley.
3168 * April 1, 1998
3169 *
3170 * .. Scalar Arguments ..
3171  INTEGER INCX, N
3172  DOUBLE PRECISION ERRBND, PREC, USCLR
3173 * ..
3174 * .. Array Arguments ..
3175  DOUBLE PRECISION X( * )
3176 * ..
3177 *
3178 * Purpose
3179 * =======
3180 *
3181 * PDERRASUM serially computes the sum of absolute values of the vector
3182 * X and returns a scaled relative acceptable error bound on the result.
3183 *
3184 * Arguments
3185 * =========
3186 *
3187 * ERRBND (global output) DOUBLE PRECISION
3188 * On exit, ERRBND specifies a scaled relative acceptable error
3189 * bound. In this case the error bound is just the absolute sum
3190 * multiplied by a constant proportional to the machine preci-
3191 * sion.
3192 *
3193 * N (global input) INTEGER
3194 * On entry, N specifies the length of the vector operand.
3195 *
3196 * USCLR (global output) DOUBLE PRECISION
3197 * On exit, USCLR specifies the sum of absolute values of the
3198 * vector X.
3199 *
3200 * X (global input) DOUBLE PRECISION array
3201 * On entry, X is an array of dimension at least
3202 * ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremen-
3203 * ted array X must contain the vector x.
3204 *
3205 * INCX (global input) INTEGER.
3206 * On entry, INCX specifies the increment for the elements of X.
3207 * INCX must not be zero.
3208 *
3209 * PREC (global input) DOUBLE PRECISION
3210 * On entry, PREC specifies the machine precision.
3211 *
3212 * -- Written on April 1, 1998 by
3213 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
3214 *
3215 * =====================================================================
3216 *
3217 * .. Parameters ..
3218  DOUBLE PRECISION TWO, ZERO
3219  PARAMETER ( TWO = 2.0d+0, zero = 0.0d+0 )
3220 * ..
3221 * .. Local Scalars ..
3222  INTEGER IX
3223  DOUBLE PRECISION ADDBND
3224 * ..
3225 * .. Intrinsic Functions ..
3226  INTRINSIC ABS
3227 * ..
3228 * .. Executable Statements ..
3229 *
3230  ix = 1
3231  usclr = zero
3232  addbnd = two * two * two * prec
3233 *
3234  DO 10 ix = 1, 1 + ( n - 1 )*incx, incx
3235  usclr = usclr + abs( x( ix ) )
3236  10 CONTINUE
3237 *
3238  errbnd = addbnd * usclr
3239 *
3240  RETURN
3241 *
3242 * End of PDERRASUM
3243 *
3244  END
3245  SUBROUTINE pderrscal( ERRBND, PSCLR, X, PREC )
3247 * -- PBLAS test routine (version 2.0) --
3248 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
3249 * and University of California, Berkeley.
3250 * April 1, 1998
3251 *
3252 * .. Scalar Arguments ..
3253  DOUBLE PRECISION ERRBND, PREC, PSCLR, X
3254 * ..
3255 *
3256 * Purpose
3257 * =======
3258 *
3259 * PDERRSCAL serially computes the product PSCLR * X and returns a sca-
3260 * led relative acceptable error bound on the result.
3261 *
3262 * Notes
3263 * =====
3264 *
3265 * If s1 = PSCLR*X and s2 are two different computed results, and s1 is
3266 * being assumed to be correct, we require
3267 *
3268 * abs( s1 - s2 ) <= ERRBND = ERRFACT * abs( s1 ),
3269 *
3270 * where ERRFACT is computed as two times the machine precision.
3271 *
3272 * Arguments
3273 * =========
3274 *
3275 * ERRBND (global output) DOUBLE PRECISION
3276 * On exit, ERRBND specifies the scaled relative acceptable er-
3277 * ror bound.
3278 *
3279 * PSCLR (global input) DOUBLE PRECISION
3280 * On entry, PSCLR specifies the scale factor.
3281 *
3282 * X (global input/global output) DOUBLE PRECISION
3283 * On entry, X specifies the scalar to be scaled. On exit, X is
3284 * the scaled entry.
3285 *
3286 * PREC (global input) DOUBLE PRECISION
3287 * On entry, PREC specifies the machine precision.
3288 *
3289 * -- Written on April 1, 1998 by
3290 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
3291 *
3292 * =====================================================================
3293 *
3294 * .. Parameters ..
3295  DOUBLE PRECISION TWO
3296  PARAMETER ( TWO = 2.0d+0 )
3297 * ..
3298 * .. Intrinsic Functions ..
3299  INTRINSIC abs
3300 * ..
3301 * .. Executable Statements ..
3302 *
3303  x = psclr * x
3304 *
3305  errbnd = ( two * prec ) * abs( x )
3306 *
3307  RETURN
3308 *
3309 * End of PDERRSCAL
3310 *
3311  END
3312  SUBROUTINE pderraxpy( ERRBND, PSCLR, X, Y, PREC )
3314 * -- PBLAS test routine (version 2.0) --
3315 * University of Tennessee, Knoxville, Oak Ridge National Laboratory,
3316 * and University of California, Berkeley.
3317 * April 1, 1998
3318 *
3319 * .. Scalar Arguments ..
3320  DOUBLE PRECISION ERRBND, PREC, PSCLR, X, Y
3321 * ..
3322 *
3323 * Purpose
3324 * =======
3325 *
3326 * PDERRAXPY serially computes Y := Y + PSCLR * X and returns a scaled
3327 * relative acceptable error bound on the result.
3328 *
3329 * Arguments
3330 * =========
3331 *
3332 * ERRBND (global output) DOUBLE PRECISION
3333 * On exit, ERRBND specifies the scaled relative acceptable er-
3334 * ror bound.
3335 *
3336 * PSCLR (global input) DOUBLE PRECISION
3337 * On entry, PSCLR specifies the scale factor.
3338 *
3339 * X (global input) DOUBLE PRECISION
3340 * On entry, X specifies the scalar to be scaled.
3341 *
3342 * Y (global input/global output) DOUBLE PRECISION
3343 * On entry, Y specifies the scalar to be added. On exit, Y con-
3344 * tains the resulting scalar.
3345 *
3346 * PREC (global input) DOUBLE PRECISION
3347 * On entry, PREC specifies the machine precision.
3348 *
3349 * -- Written on April 1, 1998 by
3350 * Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
3351 *
3352 * =====================================================================
3353 *
3354 * .. Parameters ..
3355  DOUBLE PRECISION ONE, TWO, ZERO
3356  PARAMETER ( ONE = 1.0d+0, two = 2.0d+0,
3357  $ zero = 0.0d+0 )
3358 * ..
3359 * .. Local Scalars ..
3360  DOUBLE PRECISION ADDBND, FACT, SUMPOS, SUMNEG, TMP
3361 * ..
3362 * .. Intrinsic Functions ..
3363  INTRINSIC MAX
3364 * ..
3365 * .. Executable Statements ..
3366 *
3367  sumpos = zero
3368  sumneg = zero
3369  fact = one + two * prec
3370  addbnd = two * two * two * prec
3371 *
3372  tmp = psclr * x
3373  IF( tmp.GE.zero ) THEN
3374  sumpos = sumpos + tmp * fact
3375  ELSE
3376  sumneg = sumneg - tmp * fact
3377  END IF
3378 *
3379  tmp = y
3380  IF( tmp.GE.zero ) THEN
3381  sumpos = sumpos + tmp
3382  ELSE
3383  sumneg = sumneg - tmp
3384  END IF
3385 *
3386  y = y + ( psclr * x )
3387 *
3388  errbnd = addbnd * max( sumpos, sumneg )
3389 *
3390  RETURN
3391 *
3392 * End of PDERRAXPY
3393 *
3394  END
pderrnrm2
subroutine pderrnrm2(ERRBND, N, USCLR, X, INCX, PREC)
Definition: pdblas1tst.f:3047
pdblas1tstchk
subroutine pdblas1tstchk(ICTXT, NOUT, NROUT, N, PSCLR, PUSCLR, PISCLR, X, PX, IX, JX, DESCX, INCX, Y, PY, IY, JY, DESCY, INCY, INFO)
Definition: pdblas1tst.f:2211
pdblas1tstchke
subroutine pdblas1tstchke(LTEST, INOUT, NPROCS)
Definition: pdblas1tst.f:1469
pisinscope
logical function pisinscope(ICTXT, N, IX, JX, DESCX, INCX)
Definition: pcblas1tst.f:2078
max
#define max(A, B)
Definition: pcgemr.c:180
pderraxpy
subroutine pderraxpy(ERRBND, PSCLR, X, Y, PREC)
Definition: pdblas1tst.f:3313
pdchkarg1
subroutine pdchkarg1(ICTXT, NOUT, SNAME, N, ALPHA, IX, JX, DESCX, INCX, IY, JY, DESCY, INCY, INFO)
Definition: pdblas1tst.f:1734
pdchkvout
subroutine pdchkvout(N, X, PX, IX, JX, DESCX, INCX, INFO)
Definition: pdblastst.f:2870
pdchkvin
subroutine pdchkvin(ERRMAX, N, X, PX, IX, JX, DESCX, INCX, INFO)
Definition: pdblastst.f:2576
pb_descset2
subroutine pb_descset2(DESC, M, N, IMB, INB, MB, NB, RSRC, CSRC, CTXT, LLD)
Definition: pblastst.f:3172
pddimee
subroutine pddimee(ICTXT, NOUT, SUBPTR, SCODE, SNAME)
Definition: pdblastst.f:455
pdvecee
subroutine pdvecee(ICTXT, NOUT, SUBPTR, SCODE, SNAME)
Definition: pdblastst.f:936
pb_pdlaprnt
subroutine pb_pdlaprnt(M, N, A, IA, JA, DESCA, IRPRNT, ICPRNT, CMATNM, NOUT, WORK)
Definition: pdblastst.f:8634
pderrscal
subroutine pderrscal(ERRBND, PSCLR, X, PREC)
Definition: pdblas1tst.f:3246
pderrdot
subroutine pderrdot(ERRBND, N, SCLR, X, INCX, Y, INCY, PREC)
Definition: pdblas1tst.f:2933
pdbla1tst
program pdbla1tst
Definition: pdblas1tst.f:11
pderrasum
subroutine pderrasum(ERRBND, N, USCLR, X, INCX, PREC)
Definition: pdblas1tst.f:3164
pb_infog2l
subroutine pb_infog2l(I, J, DESC, NPROW, NPCOL, MYROW, MYCOL, II, JJ, PROW, PCOL)
Definition: pblastst.f:1673
pdlagen
subroutine pdlagen(INPLACE, AFORM, DIAG, OFFA, M, N, IA, JA, DESCA, IASEED, A, LDA)
Definition: pdblastst.f:7845
pb_dchekpad
subroutine pb_dchekpad(ICTXT, MESS, M, N, A, LDA, IPRE, IPOST, CHKVAL)
Definition: pdblastst.f:9192
pdbla1tstinfo
subroutine pdbla1tstinfo(SUMMRY, NOUT, NMAT, NVAL, MXVAL, NXVAL, IMBXVAL, MBXVAL, INBXVAL, NBXVAL, RSCXVAL, CSCXVAL, IXVAL, JXVAL, INCXVAL, MYVAL, NYVAL, IMBYVAL, MBYVAL, INBYVAL, NBYVAL, RSCYVAL, CSCYVAL, IYVAL, JYVAL, INCYVAL, LDVAL, NGRIDS, PVAL, LDPVAL, QVAL, LDQVAL, LTEST, SOF, TEE, IAM, IGAP, IVERB, NPROCS, ALPHA, WORK)
Definition: pdblas1tst.f:777
pdvprnt
subroutine pdvprnt(ICTXT, NOUT, N, X, INCX, IRPRNT, ICPRNT, CVECNM)
Definition: pdblastst.f:4056
pb_dfillpad
subroutine pb_dfillpad(ICTXT, M, N, A, LDA, IPRE, IPOST, CHKVAL)
Definition: pdblastst.f:9079
icopy
subroutine icopy(N, SX, INCX, SY, INCY)
Definition: pblastst.f:1525
pdlamch
double precision function pdlamch(ICTXT, CMACH)
Definition: pdblastst.f:6769
pdmprnt
subroutine pdmprnt(ICTXT, NOUT, M, N, A, LDA, IRPRNT, ICPRNT, CMATNM)
Definition: pdblastst.f:3949
pvdescchk
subroutine pvdescchk(ICTXT, NOUT, MATRIX, DESCX, DTX, MX, NX, IMBX, INBX, MBX, NBX, RSRCX, CSRCX, INCX, MPX, NQX, IPREX, IMIDX, IPOSTX, IGAP, GAPMUL, INFO)
Definition: pblastst.f:388
pvdimchk
subroutine pvdimchk(ICTXT, NOUT, N, MATRIX, IX, JX, DESCX, INCX, INFO)
Definition: pblastst.f:3
min
#define min(A, B)
Definition: pcgemr.c:181