SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdlassq.f
Go to the documentation of this file.
1 SUBROUTINE pdlassq( N, X, IX, JX, DESCX, INCX, SCALE, SUMSQ )
2*
3* -- ScaLAPACK auxiliary routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 1, 1997
7*
8* .. Scalar Arguments ..
9 INTEGER IX, INCX, JX, N
10 DOUBLE PRECISION SCALE, SUMSQ
11* ..
12* .. Array Arguments ..
13 INTEGER DESCX( * )
14 DOUBLE PRECISION X( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PDLASSQ returns the values scl and smsq such that
21*
22* ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq,
23*
24* where x( i ) = sub( X ) = X( IX+(JX-1)*DESCX(M_)+(i-1)*INCX ).
25* The value of sumsq is assumed to be non-negative and scl returns the
26* value
27*
28* scl = max( scale, abs( x( i ) ) ).
29*
30* scale and sumsq must be supplied in SCALE and SUMSQ respectively.
31* SCALE and SUMSQ are overwritten by scl and ssq respectively.
32*
33* The routine makes only one pass through the vector sub( X ).
34*
35* Notes
36* =====
37*
38* Each global data object is described by an associated description
39* vector. This vector stores the information required to establish
40* the mapping between an object element and its corresponding process
41* and memory location.
42*
43* Let A be a generic term for any 2D block cyclicly distributed array.
44* Such a global array has an associated description vector DESCA.
45* In the following comments, the character _ should be read as
46* "of the global array".
47*
48* NOTATION STORED IN EXPLANATION
49* --------------- -------------- --------------------------------------
50* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
51* DTYPE_A = 1.
52* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
53* the BLACS process grid A is distribu-
54* ted over. The context itself is glo-
55* bal, but the handle (the integer
56* value) may vary.
57* M_A (global) DESCA( M_ ) The number of rows in the global
58* array A.
59* N_A (global) DESCA( N_ ) The number of columns in the global
60* array A.
61* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
62* the rows of the array.
63* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
64* the columns of the array.
65* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
66* row of the array A is distributed.
67* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
68* first column of the array A is
69* distributed.
70* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
71* array. LLD_A >= MAX(1,LOCr(M_A)).
72*
73* Let K be the number of rows or columns of a distributed matrix,
74* and assume that its process grid has dimension p x q.
75* LOCr( K ) denotes the number of elements of K that a process
76* would receive if K were distributed over the p processes of its
77* process column.
78* Similarly, LOCc( K ) denotes the number of elements of K that a
79* process would receive if K were distributed over the q processes of
80* its process row.
81* The values of LOCr() and LOCc() may be determined via a call to the
82* ScaLAPACK tool function, NUMROC:
83* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
84* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
85* An upper bound for these quantities may be computed by:
86* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
87* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
88*
89* Because vectors may be viewed as a subclass of matrices, a
90* distributed vector is considered to be a distributed matrix.
91*
92* The result are only available in the scope of sub( X ), i.e if
93* sub( X ) is distributed along a process row, the correct results are
94* only available in this process row of the grid. Similarly if sub( X )
95* is distributed along a process column, the correct results are only
96* available in this process column of the grid.
97*
98* Arguments
99* =========
100*
101* N (global input) INTEGER
102* The length of the distributed vector sub( X ).
103*
104* X (input) DOUBLE PRECISION
105* The vector for which a scaled sum of squares is computed.
106* x( i ) = X(IX+(JX-1)*M_X +(i-1)*INCX ), 1 <= i <= n.
107*
108* IX (global input) INTEGER
109* The row index in the global array X indicating the first
110* row of sub( X ).
111*
112* JX (global input) INTEGER
113* The column index in the global array X indicating the
114* first column of sub( X ).
115*
116* DESCX (global and local input) INTEGER array of dimension DLEN_.
117* The array descriptor for the distributed matrix X.
118*
119* INCX (global input) INTEGER
120* The global increment for the elements of X. Only two values
121* of INCX are supported in this version, namely 1 and M_X.
122* INCX must not be zero.
123*
124* SCALE (local input/local output) DOUBLE PRECISION
125* On entry, the value scale in the equation above.
126* On exit, SCALE is overwritten with scl , the scaling factor
127* for the sum of squares.
128*
129* SUMSQ (local input/local output) DOUBLE PRECISION
130* On entry, the value sumsq in the equation above.
131* On exit, SUMSQ is overwritten with smsq , the basic sum of
132* squares from which scl has been factored out.
133*
134* =====================================================================
135*
136* .. Parameters ..
137 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
138 $ LLD_, MB_, M_, NB_, N_, RSRC_
139 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
140 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
141 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
142 DOUBLE PRECISION ZERO
143 parameter( zero = 0.0d+0 )
144* ..
145* .. Local Scalars ..
146 INTEGER I, ICOFF, ICTXT, IIX, IOFF, IROFF, IXCOL,
147 $ IXROW, JJX, LDX, MYCOL, MYROW, NP, NPCOL,
148 $ NPROW, NQ
149 DOUBLE PRECISION TEMP1
150* ..
151* .. Local Arrays ..
152 DOUBLE PRECISION WORK( 2 )
153* ..
154* .. External Subroutines ..
155 EXTERNAL blacs_gridinfo, dcombssq, infog2l, pdtreecomb
156* ..
157* .. External Functions ..
158 INTEGER NUMROC
159 EXTERNAL numroc
160* ..
161* .. Intrinsic Functions ..
162 INTRINSIC abs, mod
163* ..
164* .. Executable Statements ..
165*
166* Get grid parameters.
167*
168 ictxt = descx( ctxt_ )
169 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
170*
171* Figure local indexes
172*
173 CALL infog2l( ix, jx, descx, nprow, npcol, myrow, mycol, iix, jjx,
174 $ ixrow, ixcol )
175*
176 ldx = descx( lld_ )
177 IF( incx.EQ.descx( m_ ) ) THEN
178*
179* X is rowwise distributed.
180*
181 IF( myrow.NE.ixrow )
182 $ RETURN
183 icoff = mod( jx, descx( nb_ ) )
184 nq = numroc( n+icoff, descx( nb_ ), mycol, ixcol, npcol )
185 IF( mycol.EQ.ixcol )
186 $ nq = nq - icoff
187*
188* Code direct from LAPACK's DLASSQ, (save subroutine call)
189*
190 IF( nq.GT.0 ) THEN
191 ioff = iix + ( jjx - 1 ) * ldx
192 DO 10 i = 1, nq
193 IF( x( ioff ).NE.zero ) THEN
194 temp1 = abs( x( ioff ) )
195 IF( scale.LT.temp1 ) THEN
196 sumsq = 1 + sumsq * ( scale / temp1 )**2
197 scale = temp1
198 ELSE
199 sumsq = sumsq + ( temp1 / scale )**2
200 END IF
201 END IF
202 ioff = ioff + ldx
203 10 CONTINUE
204 END IF
205*
206* Take local result and find global
207*
208 work( 1 ) = scale
209 work( 2 ) = sumsq
210*
211 CALL pdtreecomb( ictxt, 'Rowwise', 2, work, -1, ixcol,
212 $ dcombssq )
213*
214 scale = work( 1 )
215 sumsq = work( 2 )
216*
217 ELSE IF( incx.EQ.1 ) THEN
218*
219* X is columnwise distributed.
220*
221 IF( mycol.NE.ixcol )
222 $ RETURN
223 iroff = mod( ix, descx( mb_ ) )
224 np = numroc( n+iroff, descx( mb_ ), myrow, ixrow, nprow )
225 IF( myrow.EQ.ixrow )
226 $ np = np - iroff
227*
228* Code direct from LAPACK's DLASSQ, (save subroutine call)
229*
230 IF( np.GT.0 ) THEN
231 ioff = iix + ( jjx - 1 ) * ldx
232 DO 20 i = 1, np
233 IF( x( ioff ).NE.zero ) THEN
234 temp1 = abs( x( ioff ) )
235 IF( scale.LT.temp1 ) THEN
236 sumsq = 1 + sumsq*( scale / temp1 )**2
237 scale = temp1
238 ELSE
239 sumsq = sumsq + ( temp1 / scale )**2
240 END IF
241 END IF
242 ioff = ioff + 1
243 20 CONTINUE
244 END IF
245*
246* Take local result and find global
247*
248 work( 1 ) = scale
249 work( 2 ) = sumsq
250*
251 CALL pdtreecomb( ictxt, 'Columnwise', 2, work, -1, ixcol,
252 $ dcombssq )
253*
254 scale = work( 1 )
255 sumsq = work( 2 )
256*
257 END IF
258*
259 RETURN
260*
261* End of PDLASSQ
262*
263 END
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
subroutine pdlassq(n, x, ix, jx, descx, incx, scale, sumsq)
Definition pdlassq.f:2
subroutine dcombssq(v1, v2)
Definition pdtreecomb.f:259
subroutine pdtreecomb(ictxt, scope, n, mine, rdest0, cdest0, subptr)
Definition pdtreecomb.f:3