SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdpotrf.f
Go to the documentation of this file.
1 SUBROUTINE pdpotrf( UPLO, N, A, IA, JA, DESCA, INFO )
2*
3* -- ScaLAPACK routine (version 1.7) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* May 25, 2001
7*
8* .. Scalar Arguments ..
9 CHARACTER UPLO
10 INTEGER IA, INFO, JA, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 DOUBLE PRECISION A( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PDPOTRF computes the Cholesky factorization of an N-by-N real
21* symmetric positive definite distributed matrix sub( A ) denoting
22* A(IA:IA+N-1, JA:JA+N-1).
23*
24* The factorization has the form
25*
26* sub( A ) = U' * U , if UPLO = 'U', or
27*
28* sub( A ) = L * L', if UPLO = 'L',
29*
30* where U is an upper triangular matrix and L is lower triangular.
31*
32* Notes
33* =====
34*
35* Each global data object is described by an associated description
36* vector. This vector stores the information required to establish
37* the mapping between an object element and its corresponding process
38* and memory location.
39*
40* Let A be a generic term for any 2D block cyclicly distributed array.
41* Such a global array has an associated description vector DESCA.
42* In the following comments, the character _ should be read as
43* "of the global array".
44*
45* NOTATION STORED IN EXPLANATION
46* --------------- -------------- --------------------------------------
47* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
48* DTYPE_A = 1.
49* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
50* the BLACS process grid A is distribu-
51* ted over. The context itself is glo-
52* bal, but the handle (the integer
53* value) may vary.
54* M_A (global) DESCA( M_ ) The number of rows in the global
55* array A.
56* N_A (global) DESCA( N_ ) The number of columns in the global
57* array A.
58* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
59* the rows of the array.
60* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
61* the columns of the array.
62* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
63* row of the array A is distributed.
64* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
65* first column of the array A is
66* distributed.
67* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
68* array. LLD_A >= MAX(1,LOCr(M_A)).
69*
70* Let K be the number of rows or columns of a distributed matrix,
71* and assume that its process grid has dimension p x q.
72* LOCr( K ) denotes the number of elements of K that a process
73* would receive if K were distributed over the p processes of its
74* process column.
75* Similarly, LOCc( K ) denotes the number of elements of K that a
76* process would receive if K were distributed over the q processes of
77* its process row.
78* The values of LOCr() and LOCc() may be determined via a call to the
79* ScaLAPACK tool function, NUMROC:
80* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
81* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
82* An upper bound for these quantities may be computed by:
83* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
84* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
85*
86* This routine requires square block decomposition ( MB_A = NB_A ).
87*
88* Arguments
89* =========
90*
91* UPLO (global input) CHARACTER
92* = 'U': Upper triangle of sub( A ) is stored;
93* = 'L': Lower triangle of sub( A ) is stored.
94*
95* N (global input) INTEGER
96* The number of rows and columns to be operated on, i.e. the
97* order of the distributed submatrix sub( A ). N >= 0.
98*
99* A (local input/local output) DOUBLE PRECISION pointer into the
100* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
101* On entry, this array contains the local pieces of the
102* N-by-N symmetric distributed matrix sub( A ) to be factored.
103* If UPLO = 'U', the leading N-by-N upper triangular part of
104* sub( A ) contains the upper triangular part of the matrix,
105* and its strictly lower triangular part is not referenced.
106* If UPLO = 'L', the leading N-by-N lower triangular part of
107* sub( A ) contains the lower triangular part of the distribu-
108* ted matrix, and its strictly upper triangular part is not
109* referenced. On exit, if UPLO = 'U', the upper triangular
110* part of the distributed matrix contains the Cholesky factor
111* U, if UPLO = 'L', the lower triangular part of the distribu-
112* ted matrix contains the Cholesky factor L.
113*
114* IA (global input) INTEGER
115* The row index in the global array A indicating the first
116* row of sub( A ).
117*
118* JA (global input) INTEGER
119* The column index in the global array A indicating the
120* first column of sub( A ).
121*
122* DESCA (global and local input) INTEGER array of dimension DLEN_.
123* The array descriptor for the distributed matrix A.
124*
125* INFO (global output) INTEGER
126* = 0: successful exit
127* < 0: If the i-th argument is an array and the j-entry had
128* an illegal value, then INFO = -(i*100+j), if the i-th
129* argument is a scalar and had an illegal value, then
130* INFO = -i.
131* > 0: If INFO = K, the leading minor of order K,
132* A(IA:IA+K-1,JA:JA+K-1) is not positive definite, and
133* the factorization could not be completed.
134*
135* =====================================================================
136*
137* .. Parameters ..
138 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
139 $ LLD_, MB_, M_, NB_, N_, RSRC_
140 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
141 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
142 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
143 DOUBLE PRECISION ONE
144 parameter( one = 1.0d+0 )
145* ..
146* .. Local Scalars ..
147 LOGICAL UPPER
148 CHARACTER COLBTOP, ROWBTOP
149 INTEGER I, ICOFF, ICTXT, IROFF, J, JB, JN, MYCOL,
150 $ MYROW, NPCOL, NPROW
151* ..
152* .. Local Arrays ..
153 INTEGER IDUM1( 1 ), IDUM2( 1 )
154* ..
155* .. External Subroutines ..
156 EXTERNAL blacs_gridinfo, chk1mat, pchk1mat, pb_topget,
157 $ pb_topset, pdpotf2, pdsyrk, pdtrsm,
158 $ pxerbla
159* ..
160* .. External Functions ..
161 LOGICAL LSAME
162 INTEGER ICEIL
163 EXTERNAL iceil, lsame
164* ..
165* .. Intrinsic Functions ..
166 INTRINSIC ichar, min, mod
167* ..
168* .. Executable Statements ..
169*
170* Get grid parameters
171*
172 ictxt = desca( ctxt_ )
173 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
174*
175* Test the input parameters
176*
177 info = 0
178 IF( nprow.EQ.-1 ) THEN
179 info = -(600+ctxt_)
180 ELSE
181 CALL chk1mat( n, 2, n, 2, ia, ja, desca, 6, info )
182 upper = lsame( uplo, 'U' )
183 IF( info.EQ.0 ) THEN
184 iroff = mod( ia-1, desca( mb_ ) )
185 icoff = mod( ja-1, desca( nb_ ) )
186 IF ( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
187 info = -1
188 ELSE IF( iroff.NE.0 ) THEN
189 info = -4
190 ELSE IF( icoff.NE.0 ) THEN
191 info = -5
192 ELSE IF( desca( mb_ ).NE.desca( nb_ ) ) THEN
193 info = -(600+nb_)
194 END IF
195 END IF
196 IF( upper ) THEN
197 idum1( 1 ) = ichar( 'U' )
198 ELSE
199 idum1( 1 ) = ichar( 'L' )
200 END IF
201 idum2( 1 ) = 1
202 CALL pchk1mat( n, 2, n, 2, ia, ja, desca, 6, 1, idum1, idum2,
203 $ info )
204 END IF
205*
206 IF( info.NE.0 ) THEN
207 CALL pxerbla( ictxt, 'PDPOTRF', -info )
208 RETURN
209 END IF
210*
211* Quick return if possible
212*
213 IF( n.EQ.0 )
214 $ RETURN
215*
216 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
217 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
218*
219 IF( upper ) THEN
220*
221* Split-ring topology for the communication along process
222* columns, 1-tree topology along process rows.
223*
224 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
225 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'S-ring' )
226*
227* A is upper triangular, compute Cholesky factorization A = U'*U.
228*
229* Handle the first block of columns separately
230*
231 jn = min( iceil( ja, desca( nb_ ) )*desca(nb_), ja+n-1 )
232 jb = jn - ja + 1
233*
234* Perform unblocked Cholesky factorization on JB block
235*
236 CALL pdpotf2( uplo, jb, a, ia, ja, desca, info )
237 IF( info.NE.0 )
238 $ GO TO 30
239*
240 IF( jb+1.LE.n ) THEN
241*
242* Form the row panel of U using the triangular solver
243*
244 CALL pdtrsm( 'Left', uplo, 'Transpose', 'Non-Unit',
245 $ jb, n-jb, one, a, ia, ja, desca, a, ia, ja+jb,
246 $ desca )
247*
248* Update the trailing matrix, A = A - U'*U
249*
250 CALL pdsyrk( uplo, 'Transpose', n-jb, jb, -one, a, ia,
251 $ ja+jb, desca, one, a, ia+jb, ja+jb, desca )
252 END IF
253*
254* Loop over remaining block of columns
255*
256 DO 10 j = jn+1, ja+n-1, desca( nb_ )
257 jb = min( n-j+ja, desca( nb_ ) )
258 i = ia + j - ja
259*
260* Perform unblocked Cholesky factorization on JB block
261*
262 CALL pdpotf2( uplo, jb, a, i, j, desca, info )
263 IF( info.NE.0 ) THEN
264 info = info + j - ja
265 GO TO 30
266 END IF
267*
268 IF( j-ja+jb+1.LE.n ) THEN
269*
270* Form the row panel of U using the triangular solver
271*
272 CALL pdtrsm( 'Left', uplo, 'Transpose', 'Non-Unit',
273 $ jb, n-j-jb+ja, one, a, i, j, desca, a,
274 $ i, j+jb, desca )
275*
276* Update the trailing matrix, A = A - U'*U
277*
278 CALL pdsyrk( uplo, 'Transpose', n-j-jb+ja, jb,
279 $ -one, a, i, j+jb, desca, one, a, i+jb,
280 $ j+jb, desca )
281 END IF
282 10 CONTINUE
283*
284 ELSE
285*
286* 1-tree topology for the communication along process columns,
287* Split-ring topology along process rows.
288*
289 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'S-ring' )
290 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
291*
292* A is lower triangular, compute Cholesky factorization A = L*L'
293* (right-looking)
294*
295* Handle the first block of columns separately
296*
297 jn = min( iceil( ja, desca( nb_ ) )*desca( nb_ ), ja+n-1 )
298 jb = jn - ja + 1
299*
300* Perform unblocked Cholesky factorization on JB block
301*
302 CALL pdpotf2( uplo, jb, a, ia, ja, desca, info )
303 IF( info.NE.0 )
304 $ GO TO 30
305*
306 IF( jb+1.LE.n ) THEN
307*
308* Form the column panel of L using the triangular solver
309*
310 CALL pdtrsm( 'Right', uplo, 'Transpose', 'Non-Unit',
311 $ n-jb, jb, one, a, ia, ja, desca, a, ia+jb, ja,
312 $ desca )
313*
314* Update the trailing matrix, A = A - L*L'
315*
316 CALL pdsyrk( uplo, 'No Transpose', n-jb, jb, -one, a, ia+jb,
317 $ ja, desca, one, a, ia+jb, ja+jb, desca )
318*
319 END IF
320*
321 DO 20 j = jn+1, ja+n-1, desca( nb_ )
322 jb = min( n-j+ja, desca( nb_ ) )
323 i = ia + j - ja
324*
325* Perform unblocked Cholesky factorization on JB block
326*
327 CALL pdpotf2( uplo, jb, a, i, j, desca, info )
328 IF( info.NE.0 ) THEN
329 info = info + j - ja
330 GO TO 30
331 END IF
332*
333 IF( j-ja+jb+1.LE.n ) THEN
334*
335* Form the column panel of L using the triangular solver
336*
337 CALL pdtrsm( 'Right', uplo, 'Transpose', 'Non-Unit',
338 $ n-j-jb+ja, jb, one, a, i, j, desca, a, i+jb,
339 $ j, desca )
340*
341* Update the trailing matrix, A = A - L*L'
342*
343 CALL pdsyrk( uplo, 'No Transpose', n-j-jb+ja, jb, -one,
344 $ a, i+jb, j, desca, one, a, i+jb, j+jb,
345 $ desca )
346*
347 END IF
348 20 CONTINUE
349*
350 END IF
351*
352 30 CONTINUE
353*
354 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
355 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
356*
357 RETURN
358*
359* End of PDPOTRF
360*
361 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, nextra, ex, expos, info)
Definition pchkxmat.f:3
subroutine pdpotf2(uplo, n, a, ia, ja, desca, info)
Definition pdpotf2.f:2
subroutine pdpotrf(uplo, n, a, ia, ja, desca, info)
Definition pdpotrf.f:2
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2