SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pzposv.f
Go to the documentation of this file.
1 SUBROUTINE pzposv( UPLO, N, NRHS, A, IA, JA, DESCA, B, IB, JB,
2 $ DESCB, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 CHARACTER UPLO
11 INTEGER IA, IB, INFO, JA, JB, N, NRHS
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * ), DESCB( * )
15 COMPLEX*16 A( * ), B( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PZPOSV computes the solution to a complex system of linear equations
22*
23* sub( A ) * X = sub( B ),
24*
25* where sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1) and is an N-by-N
26* hermitian distributed positive definite matrix and X and sub( B )
27* denoting B(IB:IB+N-1,JB:JB+NRHS-1) are N-by-NRHS distributed
28* matrices.
29*
30* The Cholesky decomposition is used to factor sub( A ) as
31*
32* sub( A ) = U**H * U, if UPLO = 'U', or
33*
34* sub( A ) = L * L**H, if UPLO = 'L',
35*
36* where U is an upper triangular matrix and L is a lower triangular
37* matrix. The factored form of sub( A ) is then used to solve the
38* system of equations.
39*
40* Notes
41* =====
42*
43* Each global data object is described by an associated description
44* vector. This vector stores the information required to establish
45* the mapping between an object element and its corresponding process
46* and memory location.
47*
48* Let A be a generic term for any 2D block cyclicly distributed array.
49* Such a global array has an associated description vector DESCA.
50* In the following comments, the character _ should be read as
51* "of the global array".
52*
53* NOTATION STORED IN EXPLANATION
54* --------------- -------------- --------------------------------------
55* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
56* DTYPE_A = 1.
57* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
58* the BLACS process grid A is distribu-
59* ted over. The context itself is glo-
60* bal, but the handle (the integer
61* value) may vary.
62* M_A (global) DESCA( M_ ) The number of rows in the global
63* array A.
64* N_A (global) DESCA( N_ ) The number of columns in the global
65* array A.
66* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
67* the rows of the array.
68* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
69* the columns of the array.
70* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
71* row of the array A is distributed.
72* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
73* first column of the array A is
74* distributed.
75* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
76* array. LLD_A >= MAX(1,LOCr(M_A)).
77*
78* Let K be the number of rows or columns of a distributed matrix,
79* and assume that its process grid has dimension p x q.
80* LOCr( K ) denotes the number of elements of K that a process
81* would receive if K were distributed over the p processes of its
82* process column.
83* Similarly, LOCc( K ) denotes the number of elements of K that a
84* process would receive if K were distributed over the q processes of
85* its process row.
86* The values of LOCr() and LOCc() may be determined via a call to the
87* ScaLAPACK tool function, NUMROC:
88* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
89* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
90* An upper bound for these quantities may be computed by:
91* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
92* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
93*
94* This routine requires square block decomposition ( MB_A = NB_A ).
95*
96* Arguments
97* =========
98*
99* UPLO (global input) CHARACTER
100* = 'U': Upper triangle of sub( A ) is stored;
101* = 'L': Lower triangle of sub( A ) is stored.
102*
103* N (global input) INTEGER
104* The number of rows and columns to be operated on, i.e. the
105* order of the distributed submatrix sub( A ). N >= 0.
106*
107* NRHS (global input) INTEGER
108* The number of right hand sides, i.e., the number of columns
109* of the distributed submatrix sub( B ). NRHS >= 0.
110*
111* A (local input/local output) COMPLEX*16 pointer into the
112* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
113* On entry, this array contains the local pieces of the
114* N-by-N symmetric distributed matrix sub( A ) to be factored.
115* If UPLO = 'U', the leading N-by-N upper triangular part of
116* sub( A ) contains the upper triangular part of the matrix,
117* and its strictly lower triangular part is not referenced.
118* If UPLO = 'L', the leading N-by-N lower triangular part of
119* sub( A ) contains the lower triangular part of the distribu-
120* ted matrix, and its strictly upper triangular part is not
121* referenced. On exit, if INFO = 0, this array contains the
122* local pieces of the factor U or L from the Cholesky factori-
123* zation sub( A ) = U**H*U or L*L**H.
124*
125* IA (global input) INTEGER
126* The row index in the global array A indicating the first
127* row of sub( A ).
128*
129* JA (global input) INTEGER
130* The column index in the global array A indicating the
131* first column of sub( A ).
132*
133* DESCA (global and local input) INTEGER array of dimension DLEN_.
134* The array descriptor for the distributed matrix A.
135*
136* B (local input/local output) COMPLEX*16 pointer into the
137* local memory to an array of dimension (LLD_B,LOC(JB+NRHS-1)).
138* On entry, the local pieces of the right hand sides distribu-
139* ted matrix sub( B ). On exit, if INFO = 0, sub( B ) is over-
140* written with the solution distributed matrix X.
141*
142* IB (global input) INTEGER
143* The row index in the global array B indicating the first
144* row of sub( B ).
145*
146* JB (global input) INTEGER
147* The column index in the global array B indicating the
148* first column of sub( B ).
149*
150* DESCB (global and local input) INTEGER array of dimension DLEN_.
151* The array descriptor for the distributed matrix B.
152*
153* INFO (global output) INTEGER
154* = 0: successful exit
155* < 0: If the i-th argument is an array and the j-entry had
156* an illegal value, then INFO = -(i*100+j), if the i-th
157* argument is a scalar and had an illegal value, then
158* INFO = -i.
159* > 0: If INFO = K, the leading minor of order K,
160* A(IA:IA+K-1,JA:JA+K-1) is not positive definite, and
161* the factorization could not be completed, and the
162* solution has not been computed.
163*
164* =====================================================================
165*
166* .. Parameters ..
167 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
168 $ lld_, mb_, m_, nb_, n_, rsrc_
169 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
170 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
171 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
172* ..
173* .. Local Scalars ..
174 LOGICAL UPPER
175 INTEGER IAROW, IBROW, ICOFFA, ICTXT, IROFFA, IROFFB,
176 $ mycol, myrow, npcol, nprow
177* ..
178* .. Local Arrays ..
179 INTEGER IDUM1( 1 ), IDUM2( 1 )
180* ..
181* .. External Subroutines ..
182 EXTERNAL blacs_gridinfo, chk1mat, pchk2mat, pxerbla,
184* ..
185* .. External Functions ..
186 LOGICAL LSAME
187 INTEGER INDXG2P
188 EXTERNAL indxg2p, lsame
189* ..
190* .. Intrinsic Functions ..
191 INTRINSIC ichar, mod
192* ..
193* .. Executable Statements ..
194*
195* Get grid parameters
196*
197 ictxt = desca( ctxt_ )
198 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
199*
200* Test the input parameters
201*
202 info = 0
203 IF( nprow.EQ.-1 ) THEN
204 info = -(700+ctxt_)
205 ELSE
206 upper = lsame( uplo, 'U' )
207 CALL chk1mat( n, 2, n, 2, ia, ja, desca, 7, info )
208 IF( info.EQ.0 ) THEN
209 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
210 $ nprow )
211 ibrow = indxg2p( ib, descb( mb_ ), myrow, descb( rsrc_ ),
212 $ nprow )
213 iroffa = mod( ia-1, desca( mb_ ) )
214 iroffb = mod( ib-1, descb( mb_ ) )
215 icoffa = mod( ja-1, desca( nb_ ) )
216 IF ( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
217 info = -1
218 ELSE IF( iroffa.NE.0 ) THEN
219 info = -5
220 ELSE IF( icoffa.NE.0 ) THEN
221 info = -6
222 ELSE IF( desca( mb_ ).NE.desca( nb_ ) ) THEN
223 info = -(700+nb_)
224 ELSE IF( iroffb.NE.0 .OR. ibrow.NE.iarow ) THEN
225 info = -9
226 ELSE IF( descb( mb_ ).NE.desca( nb_ ) ) THEN
227 info = -(1000+nb_)
228 END IF
229 END IF
230 IF( upper ) THEN
231 idum1( 1 ) = ichar( 'U' )
232 ELSE
233 idum1( 1 ) = ichar( 'L' )
234 END IF
235 idum2( 1 ) = 1
236 CALL pchk2mat( n, 2, n, 2, ia, ja, desca, 7, n, 2, nrhs,
237 $ 3, ib, jb, descb, 11, 1, idum1, idum2, info )
238 END IF
239*
240 IF( info.NE.0 ) THEN
241 CALL pxerbla( ictxt, 'PZPOSV', -info )
242 RETURN
243 END IF
244*
245* Compute the Cholesky factorization sub( A ) = U'*U or L*L'.
246*
247 CALL pzpotrf( uplo, n, a, ia, ja, desca, info )
248*
249 IF( info.EQ.0 ) THEN
250*
251* Solve the system sub( A ) * X = sub( B ) overwriting sub( B )
252* with X.
253*
254 CALL pzpotrs( uplo, n, nrhs, a, ia, ja, desca, b, ib, jb,
255 $ descb, info )
256*
257 END IF
258*
259 RETURN
260*
261* End of PZPOSV
262*
263 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine pchk2mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, mb, mbpos0, nb, nbpos0, ib, jb, descb, descbpos0, nextra, ex, expos, info)
Definition pchkxmat.f:175
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2
subroutine pzposv(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
Definition pzposv.f:3
subroutine pzpotrf(uplo, n, a, ia, ja, desca, info)
Definition pzpotrf.f:2
subroutine pzpotrs(uplo, n, nrhs, a, ia, ja, desca, b, ib, jb, descb, info)
Definition pzpotrs.f:3