SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pcung2r.f
Go to the documentation of this file.
1 SUBROUTINE pcung2r( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, K, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 COMPLEX A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PCUNG2R generates an M-by-N complex distributed matrix Q denoting
21* A(IA:IA+M-1,JA:JA+N-1) with orthonormal columns, which is defined as
22* the first N columns of a product of K elementary reflectors of order
23* M
24*
25* Q = H(1) H(2) . . . H(k)
26*
27* as returned by PCGEQRF.
28*
29* Notes
30* =====
31*
32* Each global data object is described by an associated description
33* vector. This vector stores the information required to establish
34* the mapping between an object element and its corresponding process
35* and memory location.
36*
37* Let A be a generic term for any 2D block cyclicly distributed array.
38* Such a global array has an associated description vector DESCA.
39* In the following comments, the character _ should be read as
40* "of the global array".
41*
42* NOTATION STORED IN EXPLANATION
43* --------------- -------------- --------------------------------------
44* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
45* DTYPE_A = 1.
46* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
47* the BLACS process grid A is distribu-
48* ted over. The context itself is glo-
49* bal, but the handle (the integer
50* value) may vary.
51* M_A (global) DESCA( M_ ) The number of rows in the global
52* array A.
53* N_A (global) DESCA( N_ ) The number of columns in the global
54* array A.
55* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
56* the rows of the array.
57* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
58* the columns of the array.
59* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
60* row of the array A is distributed.
61* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
62* first column of the array A is
63* distributed.
64* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
65* array. LLD_A >= MAX(1,LOCr(M_A)).
66*
67* Let K be the number of rows or columns of a distributed matrix,
68* and assume that its process grid has dimension p x q.
69* LOCr( K ) denotes the number of elements of K that a process
70* would receive if K were distributed over the p processes of its
71* process column.
72* Similarly, LOCc( K ) denotes the number of elements of K that a
73* process would receive if K were distributed over the q processes of
74* its process row.
75* The values of LOCr() and LOCc() may be determined via a call to the
76* ScaLAPACK tool function, NUMROC:
77* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
78* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
79* An upper bound for these quantities may be computed by:
80* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
81* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
82*
83* Arguments
84* =========
85*
86* M (global input) INTEGER
87* The number of rows to be operated on i.e the number of rows
88* of the distributed submatrix Q. M >= 0.
89*
90* N (global input) INTEGER
91* The number of columns to be operated on i.e the number of
92* columns of the distributed submatrix Q. M >= N >= 0.
93*
94* K (global input) INTEGER
95* The number of elementary reflectors whose product defines the
96* matrix Q. N >= K >= 0.
97*
98* A (local input/local output) COMPLEX pointer into the
99* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
100* On entry, the j-th column must contain the vector which
101* defines the elementary reflector H(j), JA <= j <= JA+K-1, as
102* returned by PCGEQRF in the K columns of its array
103* argument A(IA:*,JA:JA+K-1). On exit, this array contains
104* the local pieces of the M-by-N distributed matrix Q.
105*
106* IA (global input) INTEGER
107* The row index in the global array A indicating the first
108* row of sub( A ).
109*
110* JA (global input) INTEGER
111* The column index in the global array A indicating the
112* first column of sub( A ).
113*
114* DESCA (global and local input) INTEGER array of dimension DLEN_.
115* The array descriptor for the distributed matrix A.
116*
117* TAU (local input) COMPLEX, array, dimension LOCc(JA+K-1).
118* This array contains the scalar factors TAU(j) of the
119* elementary reflectors H(j) as returned by PCGEQRF.
120* TAU is tied to the distributed matrix A.
121*
122* WORK (local workspace/local output) COMPLEX array,
123* dimension (LWORK)
124* On exit, WORK(1) returns the minimal and optimal LWORK.
125*
126* LWORK (local or global input) INTEGER
127* The dimension of the array WORK.
128* LWORK is local input and must be at least
129* LWORK >= MpA0 + MAX( 1, NqA0 ), where
130*
131* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
132* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
133* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
134* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
135* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
136*
137* INDXG2P and NUMROC are ScaLAPACK tool functions;
138* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
139* the subroutine BLACS_GRIDINFO.
140*
141* If LWORK = -1, then LWORK is global input and a workspace
142* query is assumed; the routine only calculates the minimum
143* and optimal size for all work arrays. Each of these
144* values is returned in the first entry of the corresponding
145* work array, and no error message is issued by PXERBLA.
146*
147*
148* INFO (local output) INTEGER
149* = 0: successful exit
150* < 0: If the i-th argument is an array and the j-entry had
151* an illegal value, then INFO = -(i*100+j), if the i-th
152* argument is a scalar and had an illegal value, then
153* INFO = -i.
154*
155* =====================================================================
156*
157* .. Parameters ..
158 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
159 $ lld_, mb_, m_, nb_, n_, rsrc_
160 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
161 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
162 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
163 COMPLEX ONE, ZERO
164 parameter( one = ( 1.0e+0, 0.0e+0 ),
165 $ zero = ( 0.0e+0, 0.0e+0 ) )
166* ..
167* .. Local Scalars ..
168 LOGICAL LQUERY
169 CHARACTER COLBTOP, ROWBTOP
170 INTEGER IACOL, IAROW, ICTXT, J, JJ, KQ, LWMIN, MPA0,
171 $ mycol, myrow, npcol, nprow, nqa0
172 COMPLEX TAUJ
173* ..
174* .. External Subroutines ..
175 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, pcelset,
176 $ pclarf, pclaset, pcscal, pb_topget,
177 $ pb_topset, pxerbla
178* ..
179* .. External Functions ..
180 INTEGER INDXG2L, INDXG2P, NUMROC
181 EXTERNAL indxg2l, indxg2p, numroc
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC cmplx, max, min, mod, real
185* ..
186* .. Executable Statements ..
187*
188* Get grid parameters
189*
190 ictxt = desca( ctxt_ )
191 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
192*
193* Test the input parameters
194*
195 info = 0
196 IF( nprow.EQ.-1 ) THEN
197 info = -(700+ctxt_)
198 ELSE
199 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 7, info )
200 IF( info.EQ.0 ) THEN
201 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
202 $ nprow )
203 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
204 $ npcol )
205 mpa0 = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
206 $ myrow, iarow, nprow )
207 nqa0 = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
208 $ mycol, iacol, npcol )
209 lwmin = mpa0 + max( 1, nqa0 )
210*
211 work( 1 ) = cmplx( real( lwmin ) )
212 lquery = ( lwork.EQ.-1 )
213 IF( n.GT.m ) THEN
214 info = -2
215 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
216 info = -3
217 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
218 info = -10
219 END IF
220 END IF
221 END IF
222 IF( info.NE.0 ) THEN
223 CALL pxerbla( ictxt, 'PCUNG2R', -info )
224 CALL blacs_abort( ictxt, 1 )
225 RETURN
226 ELSE IF( lquery ) THEN
227 RETURN
228 END IF
229*
230* Quick return if possible
231*
232 IF( n.LE.0 )
233 $ RETURN
234*
235 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
236 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
237 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'D-ring' )
238 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
239*
240* Initialise columns ja+k:ja+n-1 to columns of the unit matrix
241*
242 CALL pclaset( 'All', k, n-k, zero, zero, a, ia, ja+k, desca )
243 CALL pclaset( 'All', m-k, n-k, zero, one, a, ia+k, ja+k, desca )
244*
245 tauj = zero
246 kq = max( 1, numroc( ja+k-1, desca( nb_ ), mycol, desca( csrc_ ),
247 $ npcol ) )
248 DO 10 j = ja+k-1, ja, -1
249*
250* Apply H(j) to A(ia+j-ja:ia+m-1,j:ja+n-1) from the left
251*
252 IF( j.LT.ja+n-1 ) THEN
253 CALL pcelset( a, ia+j-ja, j, desca, one )
254 CALL pclarf( 'Left', m-j+ja, ja+n-j-1, a, ia+j-ja, j, desca,
255 $ 1, tau, a, ia+j-ja, j+1, desca, work )
256 END IF
257*
258 jj = indxg2l( j, desca( nb_ ), mycol, desca( csrc_ ), npcol )
259 iacol = indxg2p( j, desca( nb_ ), mycol, desca( csrc_ ),
260 $ npcol )
261 IF( mycol.EQ.iacol )
262 $ tauj = tau( min( jj, kq ) )
263 IF( j-ja.LT.m-1 )
264 $ CALL pcscal( m-j+ja-1, -tauj, a, ia+j-ja+1, j, desca, 1 )
265 CALL pcelset( a, ia+j-ja, j, desca, one-tauj )
266*
267* Set A(ia:ia+j-ja-1,j) to zero
268*
269 CALL pclaset( 'All', j-ja, 1, zero, zero, a, ia, j, desca )
270*
271 10 CONTINUE
272*
273 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
274 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
275*
276 work( 1 ) = cmplx( real( lwmin ) )
277*
278 RETURN
279*
280* End of PCUNG2R
281*
282 END
float cmplx[2]
Definition pblas.h:136
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine pclaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition pcblastst.f:7508
subroutine pcelset(a, ia, ja, desca, alpha)
Definition pcelset.f:2
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pclarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pclarf.f:3
subroutine pcung2r(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition pcung2r.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2