SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
psgeql2.f
Go to the documentation of this file.
1 SUBROUTINE psgeql2( M, N, A, IA, JA, DESCA, TAU, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 REAL A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PSGEQL2 computes a QL factorization of a real distributed M-by-N
21* matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L.
22*
23* Notes
24* =====
25*
26* Each global data object is described by an associated description
27* vector. This vector stores the information required to establish
28* the mapping between an object element and its corresponding process
29* and memory location.
30*
31* Let A be a generic term for any 2D block cyclicly distributed array.
32* Such a global array has an associated description vector DESCA.
33* In the following comments, the character _ should be read as
34* "of the global array".
35*
36* NOTATION STORED IN EXPLANATION
37* --------------- -------------- --------------------------------------
38* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
39* DTYPE_A = 1.
40* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
41* the BLACS process grid A is distribu-
42* ted over. The context itself is glo-
43* bal, but the handle (the integer
44* value) may vary.
45* M_A (global) DESCA( M_ ) The number of rows in the global
46* array A.
47* N_A (global) DESCA( N_ ) The number of columns in the global
48* array A.
49* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
50* the rows of the array.
51* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
52* the columns of the array.
53* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
54* row of the array A is distributed.
55* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
56* first column of the array A is
57* distributed.
58* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
59* array. LLD_A >= MAX(1,LOCr(M_A)).
60*
61* Let K be the number of rows or columns of a distributed matrix,
62* and assume that its process grid has dimension p x q.
63* LOCr( K ) denotes the number of elements of K that a process
64* would receive if K were distributed over the p processes of its
65* process column.
66* Similarly, LOCc( K ) denotes the number of elements of K that a
67* process would receive if K were distributed over the q processes of
68* its process row.
69* The values of LOCr() and LOCc() may be determined via a call to the
70* ScaLAPACK tool function, NUMROC:
71* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
72* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
73* An upper bound for these quantities may be computed by:
74* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
75* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
76*
77* Arguments
78* =========
79*
80* M (global input) INTEGER
81* The number of rows to be operated on, i.e. the number of rows
82* of the distributed submatrix sub( A ). M >= 0.
83*
84* N (global input) INTEGER
85* The number of columns to be operated on, i.e. the number of
86* columns of the distributed submatrix sub( A ). N >= 0.
87*
88* A (local input/local output) REAL pointer into the
89* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
90* On entry, the local pieces of the M-by-N distributed matrix
91* sub( A ) which is to be factored. On exit, if M >= N, the
92* lower triangle of the distributed submatrix
93* A( IA+M-N:IA+M-1, JA:JA+N-1 ) contains the N-by-N lower
94* triangular matrix L; if M <= N, the elements on and below
95* the (N-M)-th superdiagonal contain the M by N lower
96* trapezoidal matrix L; the remaining elements, with the
97* array TAU, represent the orthogonal matrix Q as a product of
98* elementary reflectors (see Further Details).
99*
100* IA (global input) INTEGER
101* The row index in the global array A indicating the first
102* row of sub( A ).
103*
104* JA (global input) INTEGER
105* The column index in the global array A indicating the
106* first column of sub( A ).
107*
108* DESCA (global and local input) INTEGER array of dimension DLEN_.
109* The array descriptor for the distributed matrix A.
110*
111* TAU (local output) REAL, array, dimension LOCc(JA+N-1)
112* This array contains the scalar factors of the elementary
113* reflectors. TAU is tied to the distributed matrix A.
114*
115* WORK (local workspace/local output) REAL array,
116* dimension (LWORK)
117* On exit, WORK(1) returns the minimal and optimal LWORK.
118*
119* LWORK (local or global input) INTEGER
120* The dimension of the array WORK.
121* LWORK is local input and must be at least
122* LWORK >= Mp0 + MAX( 1, Nq0 ), where
123*
124* IROFF = MOD( IA-1, MB_A ), ICOFF = MOD( JA-1, NB_A ),
125* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
126* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
127* Mp0 = NUMROC( M+IROFF, MB_A, MYROW, IAROW, NPROW ),
128* Nq0 = NUMROC( N+ICOFF, NB_A, MYCOL, IACOL, NPCOL ),
129*
130* and NUMROC, INDXG2P are ScaLAPACK tool functions;
131* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
132* the subroutine BLACS_GRIDINFO.
133*
134* If LWORK = -1, then LWORK is global input and a workspace
135* query is assumed; the routine only calculates the minimum
136* and optimal size for all work arrays. Each of these
137* values is returned in the first entry of the corresponding
138* work array, and no error message is issued by PXERBLA.
139*
140* INFO (local output) INTEGER
141* = 0: successful exit
142* < 0: If the i-th argument is an array and the j-entry had
143* an illegal value, then INFO = -(i*100+j), if the i-th
144* argument is a scalar and had an illegal value, then
145* INFO = -i.
146*
147* Further Details
148* ===============
149*
150* The matrix Q is represented as a product of elementary reflectors
151*
152* Q = H(ja+k-1) . . . H(ja+1) H(ja), where k = min(m,n).
153*
154* Each H(i) has the form
155*
156* H(i) = I - tau * v * v'
157*
158* where tau is a real scalar, and v is a real vector with
159* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
160* A(ia:ia+m-k+i-2,ja+n-k+i-1), and tau in TAU(ja+n-k+i-1).
161*
162* =====================================================================
163*
164* .. Parameters ..
165 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
166 $ lld_, mb_, m_, nb_, n_, rsrc_
167 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
168 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
169 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
170 REAL ONE
171 parameter( one = 1.0e+0 )
172* ..
173* .. Local Scalars ..
174 LOGICAL LQUERY
175 CHARACTER COLBTOP, ROWBTOP
176 INTEGER I, IACOL, IAROW, ICTXT, II, J, JJ, K, LWMIN,
177 $ mp, mycol, myrow, npcol, nprow, nq
178 REAL AJJ, ALPHA
179* ..
180* .. External Subroutines ..
181 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, infog2l,
182 $ pselset, pslarf, pslarfg, pb_topget,
183 $ pb_topset, pxerbla, sgebr2d, sgebs2d,
184 $ slarfg, sscal
185* ..
186* .. External Functions ..
187 INTEGER INDXG2P, NUMROC
188 EXTERNAL indxg2p, numroc
189* ..
190* .. Intrinsic Functions ..
191 INTRINSIC max, min, mod, real
192* ..
193* .. Executable Statements ..
194*
195* Get grid parameters
196*
197 ictxt = desca( ctxt_ )
198 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
199*
200* Test the input parameters
201*
202 info = 0
203 IF( nprow.EQ.-1 ) THEN
204 info = -(600+ctxt_)
205 ELSE
206 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 6, info )
207 IF( info.EQ.0 ) THEN
208 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
209 $ nprow )
210 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
211 $ npcol )
212 mp = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
213 $ myrow, iarow, nprow )
214 nq = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
215 $ mycol, iacol, npcol )
216 lwmin = mp + max( 1, nq )
217*
218 work( 1 ) = real( lwmin )
219 lquery = ( lwork.EQ.-1 )
220 IF( lwork.LT.lwmin .AND. .NOT.lquery )
221 $ info = -9
222 END IF
223 END IF
224*
225 IF( info.NE.0 ) THEN
226 CALL pxerbla( ictxt, 'PSGEQL2', -info )
227 CALL blacs_abort( ictxt, 1 )
228 RETURN
229 ELSE IF( lquery ) THEN
230 RETURN
231 END IF
232*
233* Quick return if possible
234*
235 IF( m.EQ.0 .OR. n.EQ.0 )
236 $ RETURN
237*
238 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
239 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
240 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', 'D-ring' )
241 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', ' ' )
242*
243 IF( desca( m_ ).EQ.1 ) THEN
244 IF( mycol.EQ.iacol )
245 $ nq = nq - mod( ja-1, desca( nb_ ) )
246 CALL infog2l( ia, ja, desca, nprow, npcol, myrow, mycol, ii,
247 $ jj, iarow, iacol )
248 iacol = indxg2p( ja+n-1, desca( nb_ ), mycol, desca( csrc_ ),
249 $ npcol )
250 IF( myrow.EQ.iarow ) THEN
251 IF( mycol.EQ.iacol ) THEN
252 i = ii+(jj+nq-2)*desca( lld_ )
253 ajj = a( i )
254 CALL slarfg( 1, ajj, a( i ), 1, tau( jj+nq-1 ) )
255 IF( n.GT.1 ) THEN
256 alpha = one - tau( jj+nq-1 )
257 CALL sgebs2d( ictxt, 'Rowwise', ' ', 1, 1, alpha, 1 )
258 CALL sscal( nq-1, alpha, a( ii+(jj-1)*desca( lld_ ) ),
259 $ desca( lld_ ) )
260 END IF
261 CALL sgebs2d( ictxt, 'Columnwise', ' ', 1, 1,
262 $ tau( jj+nq-1 ), 1 )
263 a( i ) = ajj
264 ELSE
265 IF( n.GT.1 ) THEN
266 CALL sgebr2d( ictxt, 'Rowwise', ' ', 1, 1, alpha,
267 $ 1, iarow, iacol )
268 CALL sscal( nq, alpha, a( ii+(jj-1)*desca( lld_ ) ),
269 $ desca( lld_ ) )
270 END IF
271 END IF
272 ELSE IF( mycol.EQ.iacol ) THEN
273 CALL sgebr2d( ictxt, 'Columnwise', ' ', 1, 1,
274 $ tau( jj+nq-1 ), 1, iarow, iacol )
275 END IF
276*
277 ELSE
278*
279 k = min( m, n )
280 DO 10 j = ja+k-1, ja, -1
281 i = ia + j - ja
282*
283* Generate elementary reflector H(j) to annihilate
284* A(ia:i+m-k-1,j+n-k)
285*
286 CALL pslarfg( m-k+i-ia+1, ajj, m-k+i, n-k+j, a, ia,
287 $ n-k+j, desca, 1, tau )
288*
289* Apply H(j) to A(ia:i+m-k,ja:j+n-k-1) from the left
290*
291 CALL pselset( a, i+m-k, j+n-k, desca, one )
292 CALL pslarf( 'Left', m-k+i-ia+1, n-k+j-ja, a, ia, n-k+j,
293 $ desca, 1, tau, a, ia, ja, desca, work )
294 CALL pselset( a, i+m-k, j+n-k, desca, ajj )
295*
296 10 CONTINUE
297*
298 END IF
299*
300 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
301 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
302*
303 work( 1 ) = real( lwmin )
304*
305 RETURN
306*
307* End of PSGEQL2
308*
309 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine infog2l(grindx, gcindx, desc, nprow, npcol, myrow, mycol, lrindx, lcindx, rsrc, csrc)
Definition infog2l.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pselset(a, ia, ja, desca, alpha)
Definition pselset.f:2
subroutine psgeql2(m, n, a, ia, ja, desca, tau, work, lwork, info)
Definition psgeql2.f:3
subroutine pslarf(side, m, n, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pslarf.f:3
subroutine pslarfg(n, alpha, iax, jax, x, ix, jx, descx, incx, tau)
Definition pslarfg.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2