SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zmmtadd.f
Go to the documentation of this file.
1 SUBROUTINE zmmtadd( M, N, ALPHA, A, LDA, BETA, B, LDB )
2*
3* -- PBLAS auxiliary routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* .. Scalar Arguments ..
9 INTEGER LDA, LDB, M, N
10 COMPLEX*16 ALPHA, BETA
11* ..
12* .. Array Arguments ..
13 COMPLEX*16 A( LDA, * ), B( LDB, * )
14* ..
15*
16* Purpose
17* =======
18*
19* ZMMTADD performs the following operation:
20*
21* B := alpha * A' + beta * B,
22*
23* where alpha, beta are scalars; A is an m by n matrix and B is an n by
24* m matrix.
25*
26* Arguments
27* =========
28*
29* M (local input) INTEGER
30* On entry, M specifies the number of rows of A and the number
31* of columns of B. M must be at least zero.
32*
33* N (local input) INTEGER
34* On entry, N specifies the number of rows of B and the number
35* of columns of A. N must be at least zero.
36*
37* ALPHA (local input) COMPLEX*16
38* On entry, ALPHA specifies the scalar alpha. When ALPHA is
39* supplied as zero then the local entries of the array A need
40* not be set on input.
41*
42* A (local input) COMPLEX*16 array
43* On entry, A is an array of dimension ( LDA, N ).
44*
45* LDA (local input) INTEGER
46* On entry, LDA specifies the leading dimension of the array A.
47* LDA must be at least max( 1, M ).
48*
49* BETA (local input) COMPLEX*16
50* On entry, BETA specifies the scalar beta. When BETA is sup-
51* plied as zero then the local entries of the array B need not
52* be set on input.
53*
54* B (local input/local output) COMPLEX*16 array
55* On entry, B is an array of dimension ( LDB, M ). On exit, the
56* leading m by n part of A has been added to the leading n by m
57* part of B.
58*
59* LDB (local input) INTEGER
60* On entry, LDB specifies the leading dimension of the array B.
61* LDB must be at least max( 1, N ).
62*
63* -- Written on April 1, 1998 by
64* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
65*
66* =====================================================================
67*
68* .. Parameters ..
69 COMPLEX*16 ONE, ZERO
70 parameter( one = ( 1.0d+0, 0.0d+0 ),
71 $ zero = ( 0.0d+0, 0.0d+0 ) )
72* ..
73* .. Local Scalars ..
74 INTEGER I, J
75* ..
76* .. External Subroutines ..
77 EXTERNAL zaxpy, zcopy, zscal
78* ..
79* .. Executable Statements ..
80*
81 IF( m.GE.n ) THEN
82 IF( alpha.EQ.one ) THEN
83 IF( beta.EQ.zero ) THEN
84 DO 20 j = 1, n
85 CALL zcopy( m, a( 1, j ), 1, b( j, 1 ), ldb )
86* DO 10 I = 1, M
87* B( J, I ) = A( I, J )
88* 10 CONTINUE
89 20 CONTINUE
90 ELSE IF( beta.NE.one ) THEN
91 DO 40 j = 1, n
92 DO 30 i = 1, m
93 b( j, i ) = a( i, j ) + beta * b( j, i )
94 30 CONTINUE
95 40 CONTINUE
96 ELSE
97 DO 60 j = 1, n
98 CALL zaxpy( m, one, a( 1, j ), 1, b( j, 1 ), ldb )
99* DO 50 I = 1, M
100* B( J, I ) = A( I, J ) + B( J, I )
101* 50 CONTINUE
102 60 CONTINUE
103 END IF
104 ELSE IF( alpha.NE.zero ) THEN
105 IF( beta.EQ.zero ) THEN
106 DO 80 j = 1, n
107 DO 70 i = 1, m
108 b( j, i ) = alpha * a( i, j )
109 70 CONTINUE
110 80 CONTINUE
111 ELSE IF( beta.NE.one ) THEN
112 DO 100 j = 1, n
113 DO 90 i = 1, m
114 b( j, i ) = alpha * a( i, j ) + beta * b( j, i )
115 90 CONTINUE
116 100 CONTINUE
117 ELSE
118 DO 120 j = 1, n
119 CALL zaxpy( m, alpha, a( 1, j ), 1, b( j, 1 ), ldb )
120* DO 110 I = 1, M
121* B( J, I ) = ALPHA * A( I, J ) + B( J, I )
122* 110 CONTINUE
123 120 CONTINUE
124 END IF
125 ELSE
126 IF( beta.EQ.zero ) THEN
127 DO 140 j = 1, m
128 DO 130 i = 1, n
129 b( i, j ) = zero
130 130 CONTINUE
131 140 CONTINUE
132 ELSE IF( beta.NE.one ) THEN
133 DO 160 j = 1, m
134 CALL zscal( n, beta, b( 1, j ), 1 )
135* DO 150 I = 1, N
136* B( I, J ) = BETA * B( I, J )
137* 150 CONTINUE
138 160 CONTINUE
139 END IF
140 END IF
141 ELSE
142 IF( alpha.EQ.one ) THEN
143 IF( beta.EQ.zero ) THEN
144 DO 180 j = 1, m
145 CALL zcopy( n, a( j, 1 ), lda, b( 1, j ), 1 )
146* DO 170 I = 1, N
147* B( I, J ) = A( J, I )
148* 170 CONTINUE
149 180 CONTINUE
150 ELSE IF( beta.NE.one ) THEN
151 DO 200 j = 1, m
152 DO 190 i = 1, n
153 b( i, j ) = a( j, i ) + beta * b( i, j )
154 190 CONTINUE
155 200 CONTINUE
156 ELSE
157 DO 220 j = 1, m
158 CALL zaxpy( n, one, a( j, 1 ), lda, b( 1, j ), 1 )
159* DO 210 I = 1, N
160* B( I, J ) = A( J, I ) + B( I, J )
161* 210 CONTINUE
162 220 CONTINUE
163 END IF
164 ELSE IF( alpha.NE.zero ) THEN
165 IF( beta.EQ.zero ) THEN
166 DO 240 j = 1, m
167 DO 230 i = 1, n
168 b( i, j ) = alpha * a( j, i )
169 230 CONTINUE
170 240 CONTINUE
171 ELSE IF( beta.NE.one ) THEN
172 DO 260 j = 1, m
173 DO 250 i = 1, n
174 b( i, j ) = alpha * a( j, i ) + beta * b( i, j )
175 250 CONTINUE
176 260 CONTINUE
177 ELSE
178 DO 280 j = 1, m
179 CALL zaxpy( n, alpha, a( j, 1 ), lda, b( 1, j ), 1 )
180* DO 270 I = 1, N
181* B( I, J ) = ALPHA * A( J, I ) + B( I, J )
182* 270 CONTINUE
183 280 CONTINUE
184 END IF
185 ELSE
186 IF( beta.EQ.zero ) THEN
187 DO 300 j = 1, m
188 DO 290 i = 1, n
189 b( i, j ) = zero
190 290 CONTINUE
191 300 CONTINUE
192 ELSE IF( beta.NE.one ) THEN
193 DO 320 j = 1, m
194 CALL zscal( n, beta, b( 1, j ), 1 )
195* DO 310 I = 1, N
196* B( I, J ) = BETA * B( I, J )
197* 310 CONTINUE
198 320 CONTINUE
199 END IF
200 END IF
201 END IF
202*
203 RETURN
204*
205* End of ZMMTADD
206*
207 END
subroutine zmmtadd(m, n, alpha, a, lda, beta, b, ldb)
Definition zmmtadd.f:2