SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
psorgrq.f
Go to the documentation of this file.
1 SUBROUTINE psorgrq( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 INTEGER IA, INFO, JA, K, LWORK, M, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 REAL A( * ), TAU( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PSORGRQ generates an M-by-N real distributed matrix Q denoting
21* A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the
22* last M rows of a product of K elementary reflectors of order N
23*
24* Q = H(1) H(2) . . . H(k)
25*
26* as returned by PSGERQF.
27*
28* Notes
29* =====
30*
31* Each global data object is described by an associated description
32* vector. This vector stores the information required to establish
33* the mapping between an object element and its corresponding process
34* and memory location.
35*
36* Let A be a generic term for any 2D block cyclicly distributed array.
37* Such a global array has an associated description vector DESCA.
38* In the following comments, the character _ should be read as
39* "of the global array".
40*
41* NOTATION STORED IN EXPLANATION
42* --------------- -------------- --------------------------------------
43* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
44* DTYPE_A = 1.
45* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46* the BLACS process grid A is distribu-
47* ted over. The context itself is glo-
48* bal, but the handle (the integer
49* value) may vary.
50* M_A (global) DESCA( M_ ) The number of rows in the global
51* array A.
52* N_A (global) DESCA( N_ ) The number of columns in the global
53* array A.
54* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
55* the rows of the array.
56* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
57* the columns of the array.
58* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59* row of the array A is distributed.
60* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61* first column of the array A is
62* distributed.
63* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
64* array. LLD_A >= MAX(1,LOCr(M_A)).
65*
66* Let K be the number of rows or columns of a distributed matrix,
67* and assume that its process grid has dimension p x q.
68* LOCr( K ) denotes the number of elements of K that a process
69* would receive if K were distributed over the p processes of its
70* process column.
71* Similarly, LOCc( K ) denotes the number of elements of K that a
72* process would receive if K were distributed over the q processes of
73* its process row.
74* The values of LOCr() and LOCc() may be determined via a call to the
75* ScaLAPACK tool function, NUMROC:
76* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78* An upper bound for these quantities may be computed by:
79* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81*
82* Arguments
83* =========
84*
85* M (global input) INTEGER
86* The number of rows to be operated on i.e the number of rows
87* of the distributed submatrix Q. M >= 0.
88*
89* N (global input) INTEGER
90* The number of columns to be operated on i.e the number of
91* columns of the distributed submatrix Q.
92* N >= M >= 0.
93*
94* K (global input) INTEGER
95* The number of elementary reflectors whose product defines the
96* matrix Q. M >= K >= 0.
97*
98* A (local input/local output) REAL pointer into the
99* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
100* On entry, the i-th row must contain the vector which defines
101* the elementary reflector H(i), IA+M-K <= i <= IA+M-1, as
102* returned by PSGERQF in the K rows of its distributed
103* matrix argument A(IA+M-K:IA+M-1,JA:*). On exit, this array
104* contains the local pieces of the M-by-N distributed matrix Q.
105*
106* IA (global input) INTEGER
107* The row index in the global array A indicating the first
108* row of sub( A ).
109*
110* JA (global input) INTEGER
111* The column index in the global array A indicating the
112* first column of sub( A ).
113*
114* DESCA (global and local input) INTEGER array of dimension DLEN_.
115* The array descriptor for the distributed matrix A.
116*
117* TAU (local input) REAL, array, dimension LOCr(IA+M-1)
118* This array contains the scalar factors TAU(i) of the
119* elementary reflectors H(i) as returned by PSGERQF.
120* TAU is tied to the distributed matrix A.
121*
122* WORK (local workspace/local output) REAL array,
123* dimension (LWORK)
124* On exit, WORK(1) returns the minimal and optimal LWORK.
125*
126* LWORK (local or global input) INTEGER
127* The dimension of the array WORK.
128* LWORK is local input and must be at least
129* LWORK >= MB_A * ( MpA0 + NqA0 + MB_A ), where
130*
131* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
132* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
133* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
134* MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
135* NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
136*
137* INDXG2P and NUMROC are ScaLAPACK tool functions;
138* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
139* the subroutine BLACS_GRIDINFO.
140*
141* If LWORK = -1, then LWORK is global input and a workspace
142* query is assumed; the routine only calculates the minimum
143* and optimal size for all work arrays. Each of these
144* values is returned in the first entry of the corresponding
145* work array, and no error message is issued by PXERBLA.
146*
147*
148* INFO (global output) INTEGER
149* = 0: successful exit
150* < 0: If the i-th argument is an array and the j-entry had
151* an illegal value, then INFO = -(i*100+j), if the i-th
152* argument is a scalar and had an illegal value, then
153* INFO = -i.
154*
155* =====================================================================
156*
157* .. Parameters ..
158 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
159 $ lld_, mb_, m_, nb_, n_, rsrc_
160 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
161 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
162 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
163 REAL ZERO
164 parameter( zero = 0.0e+0 )
165* ..
166* .. Local Scalars ..
167 LOGICAL LQUERY
168 CHARACTER COLBTOP, ROWBTOP
169 INTEGER I, IACOL, IAROW, IB, ICTXT, IINFO, IN, IPW,
170 $ lwmin, mpa0, mycol, myrow, npcol, nprow, nqa0
171* ..
172* .. Local Arrays ..
173 INTEGER IDUM1( 2 ), IDUM2( 2 )
174* ..
175* .. External Subroutines ..
176 EXTERNAL blacs_gridinfo, chk1mat, pchk1mat, pslarfb,
177 $ pslarft, pslaset, psorgr2, pb_topget,
178 $ pb_topset, pxerbla
179* ..
180* .. External Functions ..
181 INTEGER ICEIL, INDXG2P, NUMROC
182 EXTERNAL iceil, indxg2p, numroc
183* ..
184* .. Intrinsic Functions ..
185 INTRINSIC min, mod, real
186* ..
187* .. Executable Statements ..
188*
189* Get grid parameters
190*
191 ictxt = desca( ctxt_ )
192 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
193*
194* Test the input parameters
195*
196 info = 0
197 IF( nprow.EQ.-1 ) THEN
198 info = -(700+ctxt_)
199 ELSE
200 CALL chk1mat( m, 1, n, 2, ia, ja, desca, 7, info )
201 IF( info.EQ.0 ) THEN
202 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
203 $ nprow )
204 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
205 $ npcol )
206 mpa0 = numroc( m+mod( ia-1, desca( mb_ ) ), desca( mb_ ),
207 $ myrow, iarow, nprow )
208 nqa0 = numroc( n+mod( ja-1, desca( nb_ ) ), desca( nb_ ),
209 $ mycol, iacol, npcol )
210 lwmin = desca( mb_ ) * ( mpa0 + nqa0 + desca( mb_ ) )
211*
212 work( 1 ) = real( lwmin )
213 lquery = ( lwork.EQ.-1 )
214 IF( n.LT.m ) THEN
215 info = -2
216 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
217 info = -3
218 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
219 info = -10
220 END IF
221 END IF
222 idum1( 1 ) = k
223 idum2( 1 ) = 3
224 IF( lwork.EQ.-1 ) THEN
225 idum1( 2 ) = -1
226 ELSE
227 idum1( 2 ) = 1
228 END IF
229 idum2( 2 ) = 10
230 CALL pchk1mat( m, 1, n, 2, ia, ja, desca, 7, 2, idum1, idum2,
231 $ info )
232 END IF
233*
234 IF( info.NE.0 ) THEN
235 CALL pxerbla( ictxt, 'PSORGRQ', -info )
236 RETURN
237 ELSE IF( lquery ) THEN
238 RETURN
239 END IF
240*
241* Quick return if possible
242*
243 IF( m.LE.0 )
244 $ RETURN
245*
246 ipw = desca( mb_ )*desca( mb_ ) + 1
247 in = min( iceil( ia+m-k, desca( mb_ ) )*desca( mb_ ), ia+m-1 )
248 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
249 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
250 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
251 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'I-ring' )
252*
253* Set A(ia:in,ja+n-m+in-ia+1:ja-n+1) to zero.
254*
255 CALL pslaset( 'All', in-ia+1, m-in+ia-1, zero, zero, a, ia,
256 $ ja+n-m+in-ia+1, desca )
257*
258* Use unblocked code for the first or only block.
259*
260 CALL psorgr2( in-ia+1, n-m+in-ia+1, in-ia-m+k+1, a, ia, ja, desca,
261 $ tau, work, lwork, iinfo )
262*
263* Use blocked code
264*
265 DO 10 i = in+1, ia+m-1, desca( mb_ )
266 ib = min( ia+m-i, desca( mb_ ) )
267*
268* Form the triangular factor of the block reflector
269* H = H(i+ib-1) . . . H(i+1) H(i)
270*
271 CALL pslarft( 'Backward', 'Rowwise', n-m+i+ib-ia, ib, a, i, ja,
272 $ desca, tau, work, work( ipw ) )
273*
274* Apply H' to A(ia:i-1,ja:ja+n-m+i+ib-ia-1) from the right
275*
276 CALL pslarfb( 'Right', 'Transpose', 'Backward', 'Rowwise',
277 $ i-ia, n-m+i+ib-ia, ib, a, i, ja, desca, work, a,
278 $ ia, ja, desca, work( ipw ) )
279*
280* Apply H' to columns ja:ja+n-m+i+ib-ia-1 of current block
281*
282 CALL psorgr2( ib, n-m+i+ib-ia, ib, a, i, ja, desca, tau, work,
283 $ lwork, iinfo )
284*
285* Set rows i:i+ib-1,ja+n-m+i+ib-ia:ja+n-1 of current block to
286* zero
287*
288 CALL pslaset( 'All', ib, m-i-ib+ia, zero, zero, a, i,
289 $ ja+n-m+i+ib-ia, desca )
290*
291 10 CONTINUE
292*
293 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
294 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
295*
296 work( 1 ) = real( lwmin )
297*
298 RETURN
299*
300* End of PSORGRQ
301*
302 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, nextra, ex, expos, info)
Definition pchkxmat.f:3
subroutine pslaset(uplo, m, n, alpha, beta, a, ia, ja, desca)
Definition psblastst.f:6863
subroutine pslarfb(side, trans, direct, storev, m, n, k, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pslarfb.f:3
subroutine pslarft(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pslarft.f:3
subroutine psorgr2(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition psorgr2.f:3
subroutine psorgrq(m, n, k, a, ia, ja, desca, tau, work, lwork, info)
Definition psorgrq.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2