SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
smmcadd.f
Go to the documentation of this file.
1 SUBROUTINE smmcadd( M, N, ALPHA, A, LDA, BETA, B, LDB )
2*
3* -- PBLAS auxiliary routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* .. Scalar Arguments ..
9 INTEGER LDA, LDB, M, N
10 REAL ALPHA, BETA
11* ..
12* .. Array Arguments ..
13 REAL A( LDA, * ), B( LDB, * )
14* ..
15*
16* Purpose
17* =======
18*
19* SMMCADD performs the following operation:
20*
21* B := alpha * A + beta * B,
22*
23* where alpha, beta are scalars and A and B are m by n matrices.
24*
25* Arguments
26* =========
27*
28* M (local input) INTEGER
29* On entry, M specifies the number of rows of A and B. M must
30* be at least zero.
31*
32* N (local input) INTEGER
33* On entry, N specifies the number of columns of A and B.
34* N must be at least zero.
35*
36* ALPHA (local input) REAL
37* On entry, ALPHA specifies the scalar alpha. When ALPHA is
38* supplied as zero then the local entries of the array A need
39* not be set on input.
40*
41* A (local input) REAL array
42* On entry, A is an array of dimension ( LDA, N ).
43*
44* LDA (local input) INTEGER
45* On entry, LDA specifies the leading dimension of the array A.
46* LDA must be at least max( 1, M ).
47*
48* BETA (local input) REAL
49* On entry, BETA specifies the scalar beta. When BETA is sup-
50* plied as zero then the local entries of the array B need not
51* be set on input.
52*
53* B (local input/local output) REAL array
54* On entry, B is an array of dimension ( LDB, N ). On exit, the
55* leading m by n part of A has been added to the leading m by n
56* part of B.
57*
58* LDB (local input) INTEGER
59* On entry, LDB specifies the leading dimension of the array B.
60* LDB must be at least max( 1, M ).
61*
62* -- Written on April 1, 1998 by
63* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
64*
65* =====================================================================
66*
67* .. Parameters ..
68 REAL ONE, ZERO
69 parameter( one = 1.0e+0, zero = 0.0e+0 )
70* ..
71* .. Local Scalars ..
72 INTEGER I, J
73* ..
74* .. External Subroutines ..
75 EXTERNAL saxpy, scopy, sscal
76* ..
77* .. Executable Statements ..
78*
79 IF( alpha.EQ.one ) THEN
80 IF( beta.EQ.zero ) THEN
81 DO 20 j = 1, n
82 CALL scopy( m, a( 1, j ), 1, b( 1, j ), 1 )
83* DO 10 I = 1, M
84* B( I, J ) = A( I, J )
85* 10 CONTINUE
86 20 CONTINUE
87 ELSE IF( beta.NE.one ) THEN
88 DO 40 j = 1, n
89 DO 30 i = 1, m
90 b( i, j ) = a( i, j ) + beta * b( i, j )
91 30 CONTINUE
92 40 CONTINUE
93 ELSE
94 DO 60 j = 1, n
95 CALL saxpy( m, one, a( 1, j ), 1, b( 1, j ), 1 )
96* DO 50 I = 1, M
97* B( I, J ) = A( I, J ) + B( I, J )
98* 50 CONTINUE
99 60 CONTINUE
100 END IF
101 ELSE IF( alpha.NE.zero ) THEN
102 IF( beta.EQ.zero ) THEN
103 DO 80 j = 1, n
104 DO 70 i = 1, m
105 b( i, j ) = alpha * a( i, j )
106 70 CONTINUE
107 80 CONTINUE
108 ELSE IF( beta.NE.one ) THEN
109 DO 100 j = 1, n
110 DO 90 i = 1, m
111 b( i, j ) = alpha * a( i, j ) + beta * b( i, j )
112 90 CONTINUE
113 100 CONTINUE
114 ELSE
115 DO 120 j = 1, n
116 CALL saxpy( m, alpha, a( 1, j ), 1, b( 1, j ), 1 )
117* DO 110 I = 1, M
118* B( I, J ) = ALPHA * A( I, J ) + B( I, J )
119* 110 CONTINUE
120 120 CONTINUE
121 END IF
122 ELSE
123 IF( beta.EQ.zero ) THEN
124 DO 140 j = 1, n
125 DO 130 i = 1, m
126 b( i, j ) = zero
127 130 CONTINUE
128 140 CONTINUE
129 ELSE IF( beta.NE.one ) THEN
130 DO 160 j = 1, n
131 CALL sscal( m, beta, b( 1, j ), 1 )
132* DO 150 I = 1, M
133* B( I, J ) = BETA * B( I, J )
134* 150 CONTINUE
135 160 CONTINUE
136 END IF
137 END IF
138*
139 RETURN
140*
141* End of SMMCADD
142*
143 END
subroutine smmcadd(m, n, alpha, a, lda, beta, b, ldb)
Definition smmcadd.f:2