next up previous contents index
Next: LA_GBSVX Up: Examples Previous: Example 1   Contents   Index

Example 2 (from Program LA_GBSV_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.

\begin{displaymath}
A = \left( \begin{array}{rrrrrrrrr}
5 & 7 \\
6 & 10 & 1 ...
...36 \\
21 & 42 \\
17 & 34 \\
16 & 32 \end{array} \right).
\end{displaymath}

Arrays ${\bf AB}$ and ${\bf B}$ on entry:

\begin{displaymath}
\hspace{-1.00 cm}
\begin{array}{c} {\bf AB} \\
\begin{ar...
... 42 \\
17 & 34 \\
16 & 32 \\ \hline \end{array} \end{array}\end{displaymath}

The call:
CALL LA_GBSV( AB, B,
2, IPIV, INFO )

${\bf AB}$, ${\bf B}$, ${\bf IPIV}$ and ${\bf INFO}$ on exit:


\begin{displaymath}\hspace{-1.00 cm} \begin{array}{c} {\bf AB} \\
\begin{array...
... 8.87500 \times 10^{-2} \\ \cline{2-5} \end{array} \end{array} \end{displaymath}

M - Multipliers

\begin{displaymath}\hspace{-1.00 cm} \begin{array}{c} {\bf AB} \\
\begin{array...
...y} \hspace{0.25 cm} \begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}

Matrices $U$ and $X$, where $X$ is the solution of the system $ A\,X = B $:


\begin{displaymath}U = \left( \begin{array}{llllll}
6.00000 & 10.0000 & 1.00000...
...\\
& & & & & 4.58216 \times 10^{-2} \\
\end{array} \right) \end{displaymath}


\begin{displaymath}X = \left( \begin{array}{ll}
1.00000 & 2.00000 \\
1.00000 ...
... \\
9.99993 \times 10^{-1} & 2.00000 \\ \end{array} \right). \end{displaymath}



Susan Blackford 2001-08-19