next up previous contents index
Next: LA_GESVX Up: Examples Previous: Example 1 (from Program   Contents   Index

Example 2 (from Program LA_GESV_EXAMPLE)

${\bf A}$ on entry: As in Example 1.

${\bf B}$ on entry: $B_{:,1}$, where $B$ is the input matrix in Example 1.

The call:
CALL LA_GESV( A, B
(:,1), IPIV, INFO )

${\bf A}$, ${\bf B(:,1)}$, ${\bf IPIV}$ and ${\bf INFO}$ on exit:

\begin{displaymath}
\begin{array}{c} {\bf A} \\
\begin{array}{\vert lllll\ver...
...84 \times 10^{-1} & 1.62162 \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf B(:,1)} \\
\begin{array}{\vert r\ve...
...} \hspace{1.00 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}



Matrices $L$, $U$, $P$ and $x$, where $x$ is the solution of the system $A\,x = b$:




\begin{displaymath}
L = \left( \begin{array}{lllll}
1.00000 \\
7.14286 \time...
...0^{-1} & 7.83784 \times 10^{-1} & 1.00000
\end{array} \right)
\end{displaymath}




\begin{displaymath}
U = \left( \begin{array}{rrrrr}
7.00000 & 6.00000 & 8.0000...
... & 4.34078 & 4.29609 \\
& & & & 1.62162
\end{array} \right)
\end{displaymath}




\begin{displaymath}
P = \left( \begin{array}{rrrrr}
0 & 0 & 1 & 0 & 0 \\
0 &...
...000 \\ 1.00000 \\ 1.00000 \\ 1.00000 \\
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19