next up previous contents index
Next: COMPUTATIONAL ROUTINES Up: Examples Previous: Example 1 (from Program   Contents   Index

Example 2 (from Program LA_GGSVD_EXAMPLE)



Arrays ${\bf A}$ and ${\bf B}$ on entry: As in Example 1.

The call:
CALL LA_GGSVD( A, B, ALPHA, BETA, K, L, U, V, Q, INFO=INFO )

A, ALPHA, BETA, K and L on exit: As in Example 1.
U, V, Q and INFO on exit:


\begin{displaymath}
\begin{array}{c} {\bf U} \\
\begin{array}{\vert ll} \hline...
...},-2.51491 \times 10^{-1}) \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf U}\ continued \\
\begin{array}{ll} \...
...},-1.17121 \times 10^{-1}) \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}
\begin{array}{l} {\bf U}\ continued \\
\begin{array}{r\ver...
...1},-2.19152 \times 10^{-1}) \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf V} \\
\begin{array}{\vert ll\vert} \...
...-2.1960610 \times 10^{-1}) \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf Q} \\
\begin{array}{\vert lll\vert} ...
...;\; 1.41051 \times 10^{-1}) \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf Q}\ continued \\
\begin{array}{l\ver...
...y} \hspace{0.50 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}

The generalized singular values of $(A,\,B)$ are as in Example 1.
Matrices $U$, $V$ and $Q$ are:

\begin{displaymath}
U=\left( \begin{array}{ll}
-1.20287 \times 10^{-1} + 8.4847...
...\times 10^{-3} - 2.51491 \times 10^{-1}i
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left. \begin{array}{ll}
-2.47529 \times 10^{-1} + 2.87380 ...
...\times 10^{-2} - 1.17121 \times 10^{-1}i
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left.
\begin{array}{r}
-2.91983 \times 10^{-3} + 3.05257 ...
...\times 10^{-1} - 2.19152 \times 10^{-1}i
\end{array} \right),
\end{displaymath}




\begin{displaymath}
V=\left( \begin{array}{ll}
-3.13546 \times 10^{-1} + 1.8471...
...mes 10^{-1} - 2.1960610 \times 10^{-1}i
\end{array} \right),
\end{displaymath}


\begin{displaymath}
Q=\left( \begin{array}{ll}
-1.88389 \times 10^{-1} - 7.505...
...es 10^{-1} + 1.41051 \times 10^{-1}i \\
\end{array} \right.
\end{displaymath}


\begin{displaymath}
\left. \begin{array}{l}
\;\;\; 1.03882 \times 10^{-2} - 5.9...
...s 10^{-1} - 6.32460 \times 10^{-2}i \\
\end{array} \right).
\end{displaymath}


next up previous contents index
Next: COMPUTATIONAL ROUTINES Up: Examples Previous: Example 1 (from Program   Contents   Index
Susan Blackford 2001-08-19