next up previous contents index
Next: LA_SBGVX / LA_HBGVX Up: Examples Previous: Example 1 (from Program   Contents   Index

Example 2 (from Program LA_SBGV_EXAMPLE)

Matrices $A$ and $B$ as in Example 1.

Arrays ${\bf AB}$ and ${\bf BB}$ on entry:

\begin{displaymath}
\begin{array}{cc} {\bf AB} \\
\begin{array}{\vert rrrrr\v...
... & 0 \\
-5 & 2 & 0 & 0 & 0 \\
\hline \end{array} \end{array}\end{displaymath}

The call:
CALL LA_SBGV( AB, BB, W,
'L', Z, INFO )

W, INFO and Z on exit:


\begin{displaymath}
\begin{array}{c} {\bf W} \\
\begin{array}{\vert l\vert} \...
...y} \hspace{1.50 cm}
\begin{array}{c} {\bf INFO} = 0 \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf Z} \\
\begin{array}{\vert lllll\ver...
...} & -2.73340 \times 10^{-1} \\
\hline \end{array} \end{array}\end{displaymath}

The eigenvalues of the problem $A\, z=\lambda \, B\, z$ are:


\begin{displaymath}
\left( \begin{array}{l}
-2.95028 \\ -2.60316 \times 10^{-1...
...341 \times 10^{-1} \\ \;\;\; 1.12617 \\
\end{array} \right).
\end{displaymath}

The eigenvectors are:

\begin{displaymath}
\left( \begin{array}{l@{\hspace{2mm}}l@{\hspace{2mm}}l@{\hsp...
...es 10^{-2} & -2.73340 \times 10^{-1} \\
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19