next up previous contents index
Next: LA_SBGV / LA_SBGVD / Up: Generalized Symmetric Eigenvalue Problems Previous: Arguments   Contents   Index

Example (from Program LA_HPGVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrices $A$ and $B$ are the same as in Example 1 for LA_HPGV.

The call:


  CALL LA_HPGVX( AP, BP, W, 2, Z= Z, IL=4, IU=5,  M= M, & 

IFAIL=IFAIL, ABSTOL=1.0E-3_wp )
Note: wp is a work precision; wp ::= KIND(1.0) $\mid$ KIND(1.0D0)
W, M, IFAIL and Z on exit:

\begin{displaymath}
\begin{array}{c} {\bf W} \\
\begin{array}{\vert rrrrr\ver...
...t} \hline
0 & 0 & 0 & 0 & 0 \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf Z} \\ \begin{array}{\vert ll\vert} \h...
...imes 10^{-1}, \;\;\:0.000000) \\ \hline \end{array} \end{array}\end{displaymath}

The last two eigenvalues of the problem $A\,B\,z = \lambda \, z$ are:

\begin{displaymath}\left( \begin{array}{rr}
1.11573 \times 10^{2} & 3.91493 \times 10^{2} \end{array} \right).
\end{displaymath}

The two eigenvectors converged successfully and are:

\begin{displaymath}\left( \begin{array}{ll}
-5.36119 \times 10^{-2} - 2.00991 \...
...s 10^{-2} &
\;\;\:1.82597 \times 10^{-1} \end{array} \right). \end{displaymath}



Susan Blackford 2001-08-19