next up previous contents index
Next: Example 2 (from Program Up: Examples Previous: Examples   Contents   Index

Example 1 (from Program LA_SYGV_EXAMPLE)


\begin{displaymath}
A = \left( \begin{array}{rrrrr}
4 & -10 & -3 & 2 & -5 \\
...
...& 0 & 0 & 14 & 3 \\
-1 & 1 & -2 & 3 & 3
\end{array} \right)
\end{displaymath}

Arrays ${\bf A}$ and ${\bf B}$ on entry:

\begin{displaymath}
\begin{array}{cc} {\bf A} \\
\begin{array}{\vert rrrrr\ve...
...& 3 \\
$*$ & * & * & * & 3 \\
\hline \end{array} \end{array}\end{displaymath}

Elements marked * are not used by the routine.

The call:
CALL LA_SYGV( A, B, W )

B and ${\bf W}$ on exit:

\begin{displaymath}\begin{array}{c} {\bf B} \\
\begin{array}{\vert cllll\vert}...
...{0.50 cm}* & \;\;\; 1.32047 \\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{c} {\bf W} \\
\begin{array}{\vert l\vert} \hl...
....58752 \\ \;\;\; 6.01579 \\
\end{array} \right). \end{array} \end{displaymath}

The triangular factor $U$ of the Cholesky factorization of $B$ is:

\begin{displaymath}
U = \left(
\begin{array}{l@{\hspace{1mm}}l@{\hspace{1mm}}l@{...
... \;\;\;\;\;\;\;\; 0 & \;\;\; 1.32047 \\
\end{array} \right) .
\end{displaymath}



Susan Blackford 2001-08-19