next up previous contents index
Next: Driver Routines for Generalized Up: Standard Nonsymmetric Eigenvalue Problems Previous: Arguments   Contents   Index

Example (from Program LA_GEEVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrix $A$ is the same as in Example 1 for LA_GEEV.

The call:


CALL LA_GEEVX( A, WR, WI, 'B', ILO, IHI, SCALE, & 

ABNRM, RCONDE, RCONDV )

${\bf ILO, IHI, SCALE, ABNRM, RCONDE}$ and RCONDV on exit:

\begin{displaymath}
\begin{array}{c} \\
\begin{array}{cc} {\bf ILO} = 1 & {\bf ...
... 1.00000 & 1.00000 & 1.00000 \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf ABNRM} = 2.10000 \times 10^{1} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf RCONDE} \\
\begin{array}{\vert rrrr...
...-1} & 3.57990 \times 10^{-1} \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf RCONDV} \\
\begin{array}{\vert rrrr...
... 2.33094 & 1.68955 & 1.10553 \\
\hline
\end{array} \end{array}\end{displaymath}

Matrix $A$ did not need balancing.

The $l_{1}$ norm of matrix $A$ is 21.

The reciprocal condition numbers of the eigenvalues are:

\begin{displaymath}
\left( \begin{array}{rrrrr}
5.50280 \times 10^{-1} & 5.5028...
...3 \times 10^{-1} & 3.57990 \times 10^{-1} \end{array} \right).
\end{displaymath}

The reciprocal condition numbers of the right eigenvectors are:

\begin{displaymath}
\left( \begin{array}{rrrrr}
5.02587 & 5.02587 & 2.33094 & 1.68955 & 1.10553 \end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19