next up previous contents index
Next: LA_GEEV Up: Standard Nonsymmetric Eigenvalue Problems Previous: Arguments   Contents   Index

Example (from Program LA_GEESX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrix $A$ is the same as in Example 1 for LA_GEES.

Function SELECT is:


 		 LOGICAL FUNCTION SELECT( WR, WI ) 

USE LA_PRECISION, ONLY: WP $=>$ wp
REAL(WP), INTENT(IN) :: WR, WI
INTRINSIC EPSILON, ABS
IF ( (ABS(WR) + ABS(WI) ) $<$ 20.0_WP ) THEN
SELECT = .TRUE.
ELSE
SELECT = .FALSE.
END IF
END FUNCTION SELECT

The call:


 CALL LA_GEESX( A, WR, WI, SELECT=SELECT, SDIM=SDIM, & 

RCONDE=RCONDE, RCONDV=RCONDV )
WR, WI, SDIM, RCONDE and RCONDV on exit:

\begin{displaymath}
\begin{array}{cc} {\bf WR} \\
\begin{array}{\vert rrrrr\ve...
...4.45961 & 4.45961 & -5.48541 \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{cc} {\bf WI} \\
\begin{array}{\vert rrrrr\ve...
...661 & 3.80078 & -3.80078 & 0 \\
\hline \end{array} \end{array}\end{displaymath}


\begin{displaymath}\begin{array}{ccc}
{\bf SDIM} = 5 & {\bf RCONDE} = 1.00000 & {\bf RCONDV} = 2.21900 \times 10^{1}
\end{array} \end{displaymath}

The eigenvalues of matrix $A$ are:

\begin{displaymath}\left( \begin{array}{rr}
-2.21691 & +\; 8.59661\,i \\
-2.2...
...\
4.45961 & -\; 3.80078\,i \\
-5.48541
\end{array} \right) \end{displaymath}

The reciprocal condition number for the average of the eigenvalues is 1.
The reciprocal condition number for the right invariant subspace is 2.21900$ \times 10^{1}$.



Susan Blackford 2001-08-19