next up previous contents index
Next: LA_SPSV / LA_HPSV Up: Symmetric Indefinite Linear Systems Previous: Arguments   Contents   Index

Example (from Program LA_SYSVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
Matrices $A$ and $B$ are the same as in Example 1 for LA_SYSV.

The call:
CALL LA_SYSVX( A, B, X, FERR
= FERR, BERR= BERR, RCOND= RCOND )

FERR, BERR and RCOND on exit:

\begin{displaymath}\begin{array}{c} {\bf FERR} \\
\begin{array}{\vert rrr\vert...
...5} & 1.42291 \times 10^{-5}\\
\hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{c} {\bf BERR} \\
\begin{array}{\vert rrr\vert...
...8} & 2.48353 \times 10^{-9}
\\ \hline \end{array} \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{c} {\bf RCOND} = 3.07451 \times 10^{-2} \end{array} \end{displaymath}

The forward and backward errors of the three solution vectors are:

\begin{displaymath}\left( \begin{array}{ccc}
1.43778 \times 10^{-5} & 1.43778 \times 10^{-5} & 1.42291 \times 10^{-5}
\end{array} \right), \end{displaymath}


\begin{displaymath}\left( \begin{array}{ccc}
2.33236 \times 10^{-8} & 2.33236 \times 10^{-8} & 2.48353 \times 10^{-9}
\end{array} \right). \end{displaymath}

The estimate of the reciprocal condition number of matrix $A$ is $ 3.07451 \times 10^{-2}$.

The computed solution $X$ is identical to that in Example 1 for LA_SYSV.



Susan Blackford 2001-08-19