next up previous contents index
Next: LA_PPSV Up: Arguments Previous: Arguments   Contents   Index

Example (from Program LA_POSVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
$A$ and $B$ are the same as in Example $1$ for LA_POSV, except that the first column of $A$ is multiplied by $10^{-6}$.

The call:
CALL LA_POSVX( A, B, X, FACT=
'E', EQUED=EQUED, S=S )

EQUED, S, FERR and BERR on exit:

\begin{displaymath}
\begin{array}{c} \\ \begin{array}{c} {\bf EQUED} = \mbox{'Y'...
...} \\ 1.16248 \times 10^{-1} \\ \hline
\end{array} \end{array} \end{displaymath}


\begin{displaymath}\begin{array}{c} {\bf FERR} \\
\begin{array}{\vert lll\vert...
...0.00000 & 0.00000 & 0.00000 \\ \hline
\end{array} \end{array} \end{displaymath}

Equilibration was done. The scale factors and the error bounds are:

\begin{displaymath}S = \left( \begin{array}{ccccc}
1.62221 \times 10^{2} & 1.44...
...1 \times 10^{-1} & 1.16248 \times 10^{-1}
\end{array} \right), \end{displaymath}


\begin{displaymath}\left( \begin{array}{lll} 0.00000 & 0.00000 & 0.00000 \end{ar...
...n{array}{lll} 0.00000 & 0.00000 & 0.00000 \end{array} \right). \end{displaymath}

The solution of the system $ A\,X = B $ is:

\begin{displaymath}
X = \left( \begin{array}{rrr}
1.00000 & 2.00000 & 3.00000 ...
...3.00000 \\
1.00000 & 2.00000 & 3.00000
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19