next up previous contents index
Next: Symmetric/Hermitian Positive Definite Linear Up: General Linear Systems Previous: Arguments   Contents   Index

Example (from Program LA_GTSVX_EXAMPLE)

The results below are computed with $\epsilon = 1.19209 \times 10^{-7}$.
$A$ is the same as in the example for LA_GTSV.

\begin{displaymath}\hspace{-1.00 cm} B = \left( \begin{array}{rrr}
3 & 6 & 9 \\ ...
...4 & 28 & 42 \\ 12 & 24 & 36
\\ \hline \end{array} \end{array} \end{displaymath}

The call:
CALL LA_GTSVX(DL, D, DU, B, X, DLF, DF, DUF, DU2, TRANS=
'T' )

X, DLF, DF, DUF, DU2 and IPIV on exit:

\begin{displaymath}
\begin{array}{c} {\bf X} \\
\begin{array}{\vert lll\vert}...
...
1.00000 & 2.00000 & 3.00000\\ \hline
\end{array} \end{array}\end{displaymath}


\begin{displaymath}
\begin{array}{c} {\bf DLF} \\
\begin{array}{\vert l\vert}...
... 1 \\ 2\\ 4 \\ 5 \\ 6 \\ 6 \\ \hline
\end{array} \end{array}
\end{displaymath}

Matrix $U$ and the solution of the system $A^T\,X = B$ are:

\begin{displaymath}
U = \left( \begin{array}{rrrrrc}
2 & 2 & 0 \\
& 4 & 4 & ...
...00000\\
1.00000 & 2.00000 & 3.00000\\
\end{array} \right).
\end{displaymath}



Susan Blackford 2001-08-19