SUBROUTINE ZLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDW, N, NB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   E( * )
      COMPLEX*16         A( LDA, * ), TAU( * ), W( LDW, * )
*     ..
*
*  Purpose
*  =======
*
*  ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
*  Hermitian tridiagonal form by a unitary similarity
*  transformation Q' * A * Q, and returns the matrices V and W which are
*  needed to apply the transformation to the unreduced part of A.
*
*  If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
*  matrix, of which the upper triangle is supplied;
*  if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
*  matrix, of which the lower triangle is supplied.
*
*  This is an auxiliary routine called by ZHETRD.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U': Upper triangular
*          = 'L': Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  NB      (input) INTEGER
*          The number of rows and columns to be reduced.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit:
*          if UPLO = 'U', the last NB columns have been reduced to
*            tridiagonal form, with the diagonal elements overwriting
*            the diagonal elements of A; the elements above the diagonal
*            with the array TAU, represent the unitary matrix Q as a
*            product of elementary reflectors;
*          if UPLO = 'L', the first NB columns have been reduced to
*            tridiagonal form, with the diagonal elements overwriting
*            the diagonal elements of A; the elements below the diagonal
*            with the array TAU, represent the  unitary matrix Q as a
*            product of elementary reflectors.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  E       (output) DOUBLE PRECISION array, dimension (N-1)
*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
*          elements of the last NB columns of the reduced matrix;
*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
*          the first NB columns of the reduced matrix.
*
*  TAU     (output) COMPLEX*16 array, dimension (N-1)
*          The scalar factors of the elementary reflectors, stored in
*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
*          See Further Details.
*
*  W       (output) COMPLEX*16 array, dimension (LDW,NB)
*          The n-by-nb matrix W required to update the unreduced part
*          of A.
*
*  LDW     (input) INTEGER
*          The leading dimension of the array W. LDW >= max(1,N).
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n) H(n-1) . . . H(n-nb+1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
*  and tau in TAU(i-1).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
*  and tau in TAU(i).
*
*  The elements of the vectors v together form the n-by-nb matrix V
*  which is needed, with W, to apply the transformation to the unreduced
*  part of the matrix, using a Hermitian rank-2k update of the form:
*  A := A - V*W' - W*V'.
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5 and nb = 2:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  a   a   a   v4  v5 )              (  d                  )
*    (      a   a   v4  v5 )              (  1   d              )
*    (          a   1   v5 )              (  v1  1   a          )
*    (              d   1  )              (  v1  v2  a   a      )
*    (                  d  )              (  v1  v2  a   a   a  )
*
*  where d denotes a diagonal element of the reduced matrix, a denotes
*  an element of the original matrix that is unchanged, and vi denotes
*  an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO, ONE, HALF
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ),
     $                   ONE = ( 1.0D+0, 0.0D+0 ),
     $                   HALF = ( 0.5D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IW
      COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZGEMV, ZHEMV, ZLACGV, ZLARFG, ZSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      COMPLEX*16         ZDOTC
      EXTERNAL           LSAME, ZDOTC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Reduce last NB columns of upper triangle
*
         DO 10 I = N, N - NB + 1, -1
            IW = I - N + NB
            IF( I.LT.N ) THEN
*
*              Update A(1:i,i)
*
               A( I, I ) = DBLE( A( I, I ) )
               CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
               CALL ZGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
     $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
               CALL ZLACGV( N-I, W( I, IW+1 ), LDW )
               CALL ZLACGV( N-I, A( I, I+1 ), LDA )
               CALL ZGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
     $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
               CALL ZLACGV( N-I, A( I, I+1 ), LDA )
               A( I, I ) = DBLE( A( I, I ) )
            END IF
            IF( I.GT.1 ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(1:i-2,i)
*
               ALPHA = A( I-1, I )
               CALL ZLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
               E( I-1 ) = ALPHA
               A( I-1, I ) = ONE
*
*              Compute W(1:i-1,i)
*
               CALL ZHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
     $                     ZERO, W( 1, IW ), 1 )
               IF( I.LT.N ) THEN
                  CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
     $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
     $                        W( I+1, IW ), 1 )
                  CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
                  CALL ZGEMV( 'Conjugate transpose', I-1, N-I, ONE,
     $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
     $                        W( I+1, IW ), 1 )
                  CALL ZGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
               END IF
               CALL ZSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
               ALPHA = -HALF*TAU( I-1 )*ZDOTC( I-1, W( 1, IW ), 1,
     $                 A( 1, I ), 1 )
               CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
            END IF
*
   10    CONTINUE
      ELSE
*
*        Reduce first NB columns of lower triangle
*
         DO 20 I = 1, NB
*
*           Update A(i:n,i)
*
            A( I, I ) = DBLE( A( I, I ) )
            CALL ZLACGV( I-1, W( I, 1 ), LDW )
            CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, A( I, 1 ),
     $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
            CALL ZLACGV( I-1, W( I, 1 ), LDW )
            CALL ZLACGV( I-1, A( I, 1 ), LDA )
            CALL ZGEMV( 'No transpose', N-I+1, I-1, -ONE, W( I, 1 ),
     $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
            CALL ZLACGV( I-1, A( I, 1 ), LDA )
            A( I, I ) = DBLE( A( I, I ) )
            IF( I.LT.N ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(i+2:n,i)
*
               ALPHA = A( I+1, I )
               CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
     $                      TAU( I ) )
               E( I ) = ALPHA
               A( I+1, I ) = ONE
*
*              Compute W(i+1:n,i)
*
               CALL ZHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
               CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
     $                     W( I+1, 1 ), LDW, A( I+1, I ), 1, ZERO,
     $                     W( 1, I ), 1 )
               CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, A( I+1, 1 ),
     $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL ZGEMV( 'Conjugate transpose', N-I, I-1, ONE,
     $                     A( I+1, 1 ), LDA, A( I+1, I ), 1, ZERO,
     $                     W( 1, I ), 1 )
               CALL ZGEMV( 'No transpose', N-I, I-1, -ONE, W( I+1, 1 ),
     $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL ZSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
               ALPHA = -HALF*TAU( I )*ZDOTC( N-I, W( I+1, I ), 1,
     $                 A( I+1, I ), 1 )
               CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
            END IF
*
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of ZLATRD
*
      END