SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), D( * ), E( * ), TAU( * )
*     ..
*
*  Purpose
*  =======
*
*  SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
*  form T by an orthogonal similarity transformation: Q' * A * Q = T.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) REAL array, dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit, if UPLO = 'U', the diagonal and first superdiagonal
*          of A are overwritten by the corresponding elements of the
*          tridiagonal matrix T, and the elements above the first
*          superdiagonal, with the array TAU, represent the orthogonal
*          matrix Q as a product of elementary reflectors; if UPLO
*          = 'L', the diagonal and first subdiagonal of A are over-
*          written by the corresponding elements of the tridiagonal
*          matrix T, and the elements below the first subdiagonal, with
*          the array TAU, represent the orthogonal matrix Q as a product
*          of elementary reflectors. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  D       (output) REAL array, dimension (N)
*          The diagonal elements of the tridiagonal matrix T:
*          D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (N-1)
*          The off-diagonal elements of the tridiagonal matrix T:
*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
*
*  TAU     (output) REAL array, dimension (N-1)
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n-1) . . . H(2) H(1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
*  A(1:i-1,i+1), and tau in TAU(i).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(n-1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
*  and tau in TAU(i).
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  d   e   v2  v3  v4 )              (  d                  )
*    (      d   e   v3  v4 )              (  e   d              )
*    (          d   e   v4 )              (  v1  e   d          )
*    (              d   e  )              (  v1  v2  e   d      )
*    (                  d  )              (  v1  v2  v3  e   d  )
*
*  where d and e denote diagonal and off-diagonal elements of T, and vi
*  denotes an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, HALF
      PARAMETER          ( ONE = 1.0, ZERO = 0.0, HALF = 1.0 / 2.0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I
      REAL               ALPHA, TAUI
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SLARFG, SSYMV, SSYR2, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SDOT
      EXTERNAL           LSAME, SDOT
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SSYTD2', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( UPPER ) THEN
*
*        Reduce the upper triangle of A
*
         DO 10 I = N - 1, 1, -1
*
*           Generate elementary reflector H(i) = I - tau * v * v'
*           to annihilate A(1:i-1,i+1)
*
            CALL SLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
            E( I ) = A( I, I+1 )
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(1:i,1:i)
*
               A( I, I+1 ) = ONE
*
*              Compute  x := tau * A * v  storing x in TAU(1:i)
*
               CALL SSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
     $                     TAU, 1 )
*
*              Compute  w := x - 1/2 * tau * (x'*v) * v
*
               ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, A( 1, I+1 ), 1 )
               CALL SAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w' - w * v'
*
               CALL SSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
     $                     LDA )
*
               A( I, I+1 ) = E( I )
            END IF
            D( I+1 ) = A( I+1, I+1 )
            TAU( I ) = TAUI
   10    CONTINUE
         D( 1 ) = A( 1, 1 )
      ELSE
*
*        Reduce the lower triangle of A
*
         DO 20 I = 1, N - 1
*
*           Generate elementary reflector H(i) = I - tau * v * v'
*           to annihilate A(i+2:n,i)
*
            CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
     $                   TAUI )
            E( I ) = A( I+1, I )
*
            IF( TAUI.NE.ZERO ) THEN
*
*              Apply H(i) from both sides to A(i+1:n,i+1:n)
*
               A( I+1, I ) = ONE
*
*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
*
               CALL SSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
*
*              Compute  w := x - 1/2 * tau * (x'*v) * v
*
               ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, A( I+1, I ),
     $                 1 )
               CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
*
*              Apply the transformation as a rank-2 update:
*                 A := A - v * w' - w * v'
*
               CALL SSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
     $                     A( I+1, I+1 ), LDA )
*
               A( I+1, I ) = E( I )
            END IF
            D( I ) = A( I, I )
            TAU( I ) = TAUI
   20    CONTINUE
         D( N ) = A( N, N )
      END IF
*
      RETURN
*
*     End of SSYTD2
*
      END