SUBROUTINE SLARRK( N, IW, GL, GU,
     $                    D, E2, PIVMIN, RELTOL, W, WERR, INFO)
      IMPLICIT NONE
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER   INFO, IW, N
      REAL                PIVMIN, RELTOL, GL, GU, W, WERR
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E2( * )
*     ..
*
*  Purpose
*  =======
*
*  SLARRK computes one eigenvalue of a symmetric tridiagonal
*  matrix T to suitable accuracy. This is an auxiliary code to be
*  called from SSTEMR.
*
*  To avoid overflow, the matrix must be scaled so that its
*  largest element is no greater than overflow**(1/2) *
*  underflow**(1/4) in absolute value, and for greatest
*  accuracy, it should not be much smaller than that.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford
*  University, July 21, 1966.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix T.  N >= 0.
*
*  IW      (input) INTEGER
*          The index of the eigenvalues to be returned.
*
*  GL      (input) REAL            
*  GU      (input) REAL            
*          An upper and a lower bound on the eigenvalue.
*
*  D       (input) REAL             array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix T.
*
*  E2      (input) REAL             array, dimension (N-1)
*          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
*
*  PIVMIN  (input) REAL            
*          The minimum pivot allowed in the Sturm sequence for T.
*
*  RELTOL  (input) REAL            
*          The minimum relative width of an interval.  When an interval
*          is narrower than RELTOL times the larger (in
*          magnitude) endpoint, then it is considered to be
*          sufficiently small, i.e., converged.  Note: this should
*          always be at least radix*machine epsilon.
*
*  W       (output) REAL            
*
*  WERR    (output) REAL            
*          The error bound on the corresponding eigenvalue approximation
*          in W.
*
*  INFO    (output) INTEGER
*          = 0:       Eigenvalue converged
*          = -1:      Eigenvalue did NOT converge
*
*  Internal Parameters
*  ===================
*
*  FUDGE   REAL            , default = 2
*          A "fudge factor" to widen the Gershgorin intervals.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               FUDGE, HALF, TWO, ZERO
      PARAMETER          ( HALF = 0.5E0, TWO = 2.0E0,
     $                     FUDGE = TWO, ZERO = 0.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER   I, IT, ITMAX, NEGCNT
      REAL               ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
     $                   TMP2, TNORM
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL   SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, MAX
*     ..
*     .. Executable Statements ..
*
*     Get machine constants
      EPS = SLAMCH( 'P' )

      TNORM = MAX( ABS( GL ), ABS( GU ) )
      RTOLI = RELTOL
      ATOLI = FUDGE*TWO*PIVMIN

      ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
     $           LOG( TWO ) ) + 2

      INFO = -1

      LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
      RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
      IT = 0

 10   CONTINUE
*
*     Check if interval converged or maximum number of iterations reached
*
      TMP1 = ABS( RIGHT - LEFT )
      TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
      IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
         INFO = 0
         GOTO 30
      ENDIF
      IF(IT.GT.ITMAX)
     $   GOTO 30

*
*     Count number of negative pivots for mid-point
*
      IT = IT + 1
      MID = HALF * (LEFT + RIGHT)
      NEGCNT = 0
      TMP1 = D( 1 ) - MID
      IF( ABS( TMP1 ).LT.PIVMIN )
     $   TMP1 = -PIVMIN
      IF( TMP1.LE.ZERO )
     $   NEGCNT = NEGCNT + 1
*
      DO 20 I = 2, N
         TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
         IF( ABS( TMP1 ).LT.PIVMIN )
     $      TMP1 = -PIVMIN
         IF( TMP1.LE.ZERO )
     $      NEGCNT = NEGCNT + 1
 20   CONTINUE

      IF(NEGCNT.GE.IW) THEN
         RIGHT = MID
      ELSE
         LEFT = MID
      ENDIF
      GOTO 10

 30   CONTINUE
*
*     Converged or maximum number of iterations reached
*
      W = HALF * (LEFT + RIGHT)
      WERR = HALF * ABS( RIGHT - LEFT )

      RETURN
*
*     End of SLARRK
*
      END