SUBROUTINE SGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            INFO, LDA, N
      REAL               ANORM, RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGECON estimates the reciprocal of the condition number of a general
*  real matrix A, in either the 1-norm or the infinity-norm, using
*  the LU factorization computed by SGETRF.
*
*  An estimate is obtained for norm(inv(A)), and the reciprocal of the
*  condition number is computed as
*     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
*  Arguments
*  =========
*
*  NORM    (input) CHARACTER*1
*          Specifies whether the 1-norm condition number or the
*          infinity-norm condition number is required:
*          = '1' or 'O':  1-norm;
*          = 'I':         Infinity-norm.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The factors L and U from the factorization A = P*L*U
*          as computed by SGETRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  ANORM   (input) REAL
*          If NORM = '1' or 'O', the 1-norm of the original matrix A.
*          If NORM = 'I', the infinity-norm of the original matrix A.
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of the matrix A,
*          computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
*  WORK    (workspace) REAL array, dimension (4*N)
*
*  IWORK   (workspace) INTEGER array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ONENRM
      CHARACTER          NORMIN
      INTEGER            IX, KASE, KASE1
      REAL               AINVNM, SCALE, SL, SMLNUM, SU
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SLAMCH
      EXTERNAL           LSAME, ISAMAX, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLACN2, SLATRS, SRSCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( ANORM.LT.ZERO ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGECON', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      RCOND = ZERO
      IF( N.EQ.0 ) THEN
         RCOND = ONE
         RETURN
      ELSE IF( ANORM.EQ.ZERO ) THEN
         RETURN
      END IF
*
      SMLNUM = SLAMCH( 'Safe minimum' )
*
*     Estimate the norm of inv(A).
*
      AINVNM = ZERO
      NORMIN = 'N'
      IF( ONENRM ) THEN
         KASE1 = 1
      ELSE
         KASE1 = 2
      END IF
      KASE = 0
   10 CONTINUE
      CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.KASE1 ) THEN
*
*           Multiply by inv(L).
*
            CALL SLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
     $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
*
*           Multiply by inv(U).
*
            CALL SLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
     $                   A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
         ELSE
*
*           Multiply by inv(U').
*
            CALL SLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
     $                   LDA, WORK, SU, WORK( 3*N+1 ), INFO )
*
*           Multiply by inv(L').
*
            CALL SLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
     $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
         END IF
*
*        Divide X by 1/(SL*SU) if doing so will not cause overflow.
*
         SCALE = SL*SU
         NORMIN = 'Y'
         IF( SCALE.NE.ONE ) THEN
            IX = ISAMAX( N, WORK, 1 )
            IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
     $         GO TO 20
            CALL SRSCL( N, SCALE, WORK, 1 )
         END IF
         GO TO 10
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM.NE.ZERO )
     $   RCOND = ( ONE / AINVNM ) / ANORM
*
   20 CONTINUE
      RETURN
*
*     End of SGECON
*
      END