SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            I
      DOUBLE PRECISION   DSIGMA, RHO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
*     ..
*
*  Purpose
*  =======
*
*  This subroutine computes the square root of the I-th eigenvalue
*  of a positive symmetric rank-one modification of a 2-by-2 diagonal
*  matrix
*
*             diag( D ) * diag( D ) +  RHO *  Z * transpose(Z) .
*
*  The diagonal entries in the array D are assumed to satisfy
*
*             0 <= D(i) < D(j)  for  i < j .
*
*  We also assume RHO > 0 and that the Euclidean norm of the vector
*  Z is one.
*
*  Arguments
*  =========
*
*  I      (input) INTEGER
*         The index of the eigenvalue to be computed.  I = 1 or I = 2.
*
*  D      (input) DOUBLE PRECISION array, dimension ( 2 )
*         The original eigenvalues.  We assume 0 <= D(1) < D(2).
*
*  Z      (input) DOUBLE PRECISION array, dimension ( 2 )
*         The components of the updating vector.
*
*  DELTA  (output) DOUBLE PRECISION array, dimension ( 2 )
*         Contains (D(j) - sigma_I) in its  j-th component.
*         The vector DELTA contains the information necessary
*         to construct the eigenvectors.
*
*  RHO    (input) DOUBLE PRECISION
*         The scalar in the symmetric updating formula.
*
*  DSIGMA (output) DOUBLE PRECISION
*         The computed sigma_I, the I-th updated eigenvalue.
*
*  WORK   (workspace) DOUBLE PRECISION array, dimension ( 2 )
*         WORK contains (D(j) + sigma_I) in its  j-th component.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ren-Cang Li, Computer Science Division, University of California
*     at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                   THREE = 3.0D+0, FOUR = 4.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   B, C, DEL, DELSQ, TAU, W
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      DEL = D( 2 ) - D( 1 )
      DELSQ = DEL*( D( 2 )+D( 1 ) )
      IF( I.EQ.1 ) THEN
         W = ONE + FOUR*RHO*( Z( 2 )*Z( 2 ) / ( D( 1 )+THREE*D( 2 ) )-
     $       Z( 1 )*Z( 1 ) / ( THREE*D( 1 )+D( 2 ) ) ) / DEL
         IF( W.GT.ZERO ) THEN
            B = DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 1 )*Z( 1 )*DELSQ
*
*           B > ZERO, always
*
*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 )
*
            TAU = TWO*C / ( B+SQRT( ABS( B*B-FOUR*C ) ) )
*
*           The following TAU is DSIGMA - D( 1 )
*
            TAU = TAU / ( D( 1 )+SQRT( D( 1 )*D( 1 )+TAU ) )
            DSIGMA = D( 1 ) + TAU
            DELTA( 1 ) = -TAU
            DELTA( 2 ) = DEL - TAU
            WORK( 1 ) = TWO*D( 1 ) + TAU
            WORK( 2 ) = ( D( 1 )+TAU ) + D( 2 )
*           DELTA( 1 ) = -Z( 1 ) / TAU
*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU )
         ELSE
            B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
            C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
            IF( B.GT.ZERO ) THEN
               TAU = -TWO*C / ( B+SQRT( B*B+FOUR*C ) )
            ELSE
               TAU = ( B-SQRT( B*B+FOUR*C ) ) / TWO
            END IF
*
*           The following TAU is DSIGMA - D( 2 )
*
            TAU = TAU / ( D( 2 )+SQRT( ABS( D( 2 )*D( 2 )+TAU ) ) )
            DSIGMA = D( 2 ) + TAU
            DELTA( 1 ) = -( DEL+TAU )
            DELTA( 2 ) = -TAU
            WORK( 1 ) = D( 1 ) + TAU + D( 2 )
            WORK( 2 ) = TWO*D( 2 ) + TAU
*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*           DELTA( 2 ) = -Z( 2 ) / TAU
         END IF
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      ELSE
*
*        Now I=2
*
         B = -DELSQ + RHO*( Z( 1 )*Z( 1 )+Z( 2 )*Z( 2 ) )
         C = RHO*Z( 2 )*Z( 2 )*DELSQ
*
*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 )
*
         IF( B.GT.ZERO ) THEN
            TAU = ( B+SQRT( B*B+FOUR*C ) ) / TWO
         ELSE
            TAU = TWO*C / ( -B+SQRT( B*B+FOUR*C ) )
         END IF
*
*        The following TAU is DSIGMA - D( 2 )
*
         TAU = TAU / ( D( 2 )+SQRT( D( 2 )*D( 2 )+TAU ) )
         DSIGMA = D( 2 ) + TAU
         DELTA( 1 ) = -( DEL+TAU )
         DELTA( 2 ) = -TAU
         WORK( 1 ) = D( 1 ) + TAU + D( 2 )
         WORK( 2 ) = TWO*D( 2 ) + TAU
*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU )
*        DELTA( 2 ) = -Z( 2 ) / TAU
*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) )
*        DELTA( 1 ) = DELTA( 1 ) / TEMP
*        DELTA( 2 ) = DELTA( 2 ) / TEMP
      END IF
      RETURN
*
*     End of DLASD5
*
      END