FUNCTION DLANEG( N, D, LLD, SIGMA, PIVMIN, R )
      IMPLICIT NONE
      INTEGER DLANEG
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            N, R
      DOUBLE PRECISION   PIVMIN, SIGMA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), LLD( * )
*     ..
*
*  Purpose
*  =======
*
*  DLANEG computes the Sturm count, the number of negative pivots
*  encountered while factoring tridiagonal T - sigma I = L D L^T.
*  This implementation works directly on the factors without forming
*  the tridiagonal matrix T.  The Sturm count is also the number of
*  eigenvalues of T less than sigma.
*
*  This routine is called from DLARRB.
*
*  The current routine does not use the PIVMIN parameter but rather
*  requires IEEE-754 propagation of Infinities and NaNs.  This
*  routine also has no input range restrictions but does require
*  default exception handling such that x/0 produces Inf when x is
*  non-zero, and Inf/Inf produces NaN.  For more information, see:
*
*    Marques, Riedy, and Voemel, "Benefits of IEEE-754 Features in
*    Modern Symmetric Tridiagonal Eigensolvers," SIAM Journal on
*    Scientific Computing, v28, n5, 2006.  DOI 10.1137/050641624
*    (Tech report version in LAWN 172 with the same title.)
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The N diagonal elements of the diagonal matrix D.
*
*  LLD     (input) DOUBLE PRECISION array, dimension (N-1)
*          The (N-1) elements L(i)*L(i)*D(i).
*
*  SIGMA   (input) DOUBLE PRECISION
*          Shift amount in T - sigma I = L D L^T.
*
*  PIVMIN  (input) DOUBLE PRECISION
*          The minimum pivot in the Sturm sequence.  May be used
*          when zero pivots are encountered on non-IEEE-754
*          architectures.
*
*  R       (input) INTEGER
*          The twist index for the twisted factorization that is used
*          for the negcount.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Osni Marques, LBNL/NERSC, USA
*     Christof Voemel, University of California, Berkeley, USA
*     Jason Riedy, University of California, Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
*     Some architectures propagate Infinities and NaNs very slowly, so
*     the code computes counts in BLKLEN chunks.  Then a NaN can
*     propagate at most BLKLEN columns before being detected.  This is
*     not a general tuning parameter; it needs only to be just large
*     enough that the overhead is tiny in common cases.
      INTEGER BLKLEN
      PARAMETER ( BLKLEN = 128 )
*     ..
*     .. Local Scalars ..
      INTEGER            BJ, J, NEG1, NEG2, NEGCNT
      DOUBLE PRECISION   BSAV, DMINUS, DPLUS, GAMMA, P, T, TMP
      LOGICAL SAWNAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MIN, MAX
*     ..
*     .. External Functions ..
      LOGICAL DISNAN
      EXTERNAL DISNAN
*     ..
*     .. Executable Statements ..

      NEGCNT = 0

*     I) upper part: L D L^T - SIGMA I = L+ D+ L+^T
      T = -SIGMA
      DO 210 BJ = 1, R-1, BLKLEN
         NEG1 = 0
         BSAV = T
         DO 21 J = BJ, MIN(BJ+BLKLEN-1, R-1)
            DPLUS = D( J ) + T
            IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1
            TMP = T / DPLUS
            T = TMP * LLD( J ) - SIGMA
 21      CONTINUE
         SAWNAN = DISNAN( T )
*     Run a slower version of the above loop if a NaN is detected.
*     A NaN should occur only with a zero pivot after an infinite
*     pivot.  In that case, substituting 1 for T/DPLUS is the
*     correct limit.
         IF( SAWNAN ) THEN
            NEG1 = 0
            T = BSAV
            DO 22 J = BJ, MIN(BJ+BLKLEN-1, R-1)
               DPLUS = D( J ) + T
               IF( DPLUS.LT.ZERO ) NEG1 = NEG1 + 1
               TMP = T / DPLUS
               IF (DISNAN(TMP)) TMP = ONE
               T = TMP * LLD(J) - SIGMA
 22         CONTINUE
         END IF
         NEGCNT = NEGCNT + NEG1
 210  CONTINUE
*
*     II) lower part: L D L^T - SIGMA I = U- D- U-^T
      P = D( N ) - SIGMA
      DO 230 BJ = N-1, R, -BLKLEN
         NEG2 = 0
         BSAV = P
         DO 23 J = BJ, MAX(BJ-BLKLEN+1, R), -1
            DMINUS = LLD( J ) + P
            IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1
            TMP = P / DMINUS
            P = TMP * D( J ) - SIGMA
 23      CONTINUE
         SAWNAN = DISNAN( P )
*     As above, run a slower version that substitutes 1 for Inf/Inf.
*
         IF( SAWNAN ) THEN
            NEG2 = 0
            P = BSAV
            DO 24 J = BJ, MAX(BJ-BLKLEN+1, R), -1
               DMINUS = LLD( J ) + P
               IF( DMINUS.LT.ZERO ) NEG2 = NEG2 + 1
               TMP = P / DMINUS
               IF (DISNAN(TMP)) TMP = ONE
               P = TMP * D(J) - SIGMA
 24         CONTINUE
         END IF
         NEGCNT = NEGCNT + NEG2
 230  CONTINUE
*
*     III) Twist index
*       T was shifted by SIGMA initially.
      GAMMA = (T + SIGMA) + P
      IF( GAMMA.LT.ZERO ) NEGCNT = NEGCNT+1

      DLANEG = NEGCNT
      END