SUBROUTINE DLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX,
     $                   CTOT, W, S, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, N, N1
      DOUBLE PRECISION   RHO
*     ..
*     .. Array Arguments ..
      INTEGER            CTOT( * ), INDX( * )
      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
     $                   S( * ), W( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAED3 finds the roots of the secular equation, as defined by the
*  values in D, W, and RHO, between 1 and K.  It makes the
*  appropriate calls to DLAED4 and then updates the eigenvectors by
*  multiplying the matrix of eigenvectors of the pair of eigensystems
*  being combined by the matrix of eigenvectors of the K-by-K system
*  which is solved here.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.
*
*  Arguments
*  =========
*
*  K       (input) INTEGER
*          The number of terms in the rational function to be solved by
*          DLAED4.  K >= 0.
*
*  N       (input) INTEGER
*          The number of rows and columns in the Q matrix.
*          N >= K (deflation may result in N>K).
*
*  N1      (input) INTEGER
*          The location of the last eigenvalue in the leading submatrix.
*          min(1,N) <= N1 <= N/2.
*
*  D       (output) DOUBLE PRECISION array, dimension (N)
*          D(I) contains the updated eigenvalues for
*          1 <= I <= K.
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
*          Initially the first K columns are used as workspace.
*          On output the columns 1 to K contain
*          the updated eigenvectors.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  RHO     (input) DOUBLE PRECISION
*          The value of the parameter in the rank one update equation.
*          RHO >= 0 required.
*
*  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K)
*          The first K elements of this array contain the old roots
*          of the deflated updating problem.  These are the poles
*          of the secular equation. May be changed on output by
*          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
*          Cray-2, or Cray C-90, as described above.
*
*  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N)
*          The first K columns of this matrix contain the non-deflated
*          eigenvectors for the split problem.
*
*  INDX    (input) INTEGER array, dimension (N)
*          The permutation used to arrange the columns of the deflated
*          Q matrix into three groups (see DLAED2).
*          The rows of the eigenvectors found by DLAED4 must be likewise
*          permuted before the matrix multiply can take place.
*
*  CTOT    (input) INTEGER array, dimension (4)
*          A count of the total number of the various types of columns
*          in Q, as described in INDX.  The fourth column type is any
*          column which has been deflated.
*
*  W       (input/output) DOUBLE PRECISION array, dimension (K)
*          The first K elements of this array contain the components
*          of the deflation-adjusted updating vector. Destroyed on
*          output.
*
*  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
*          Will contain the eigenvectors of the repaired matrix which
*          will be multiplied by the previously accumulated eigenvectors
*          to update the system.
*
*  LDS     (input) INTEGER
*          The leading dimension of S.  LDS >= max(1,K).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, an eigenvalue did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*  Modified by Francoise Tisseur, University of Tennessee.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, II, IQ2, J, N12, N2, N23
      DOUBLE PRECISION   TEMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMC3, DNRM2
      EXTERNAL           DLAMC3, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMM, DLACPY, DLAED4, DLASET, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( K.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.K ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED3', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
*     be computed with high relative accuracy (barring over/underflow).
*     This is a problem on machines without a guard digit in
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
*     which on any of these machines zeros out the bottommost
*     bit of DLAMDA(I) if it is 1; this makes the subsequent
*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
*     occurs. On binary machines with a guard digit (almost all
*     machines) it does not change DLAMDA(I) at all. On hexadecimal
*     and decimal machines with a guard digit, it slightly
*     changes the bottommost bits of DLAMDA(I). It does not account
*     for hexadecimal or decimal machines without guard digits
*     (we know of none). We use a subroutine call to compute
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
*     this code.
*
      DO 10 I = 1, K
         DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
   10 CONTINUE
*
      DO 20 J = 1, K
         CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
*
*        If the zero finder fails, the computation is terminated.
*
         IF( INFO.NE.0 )
     $      GO TO 120
   20 CONTINUE
*
      IF( K.EQ.1 )
     $   GO TO 110
      IF( K.EQ.2 ) THEN
         DO 30 J = 1, K
            W( 1 ) = Q( 1, J )
            W( 2 ) = Q( 2, J )
            II = INDX( 1 )
            Q( 1, J ) = W( II )
            II = INDX( 2 )
            Q( 2, J ) = W( II )
   30    CONTINUE
         GO TO 110
      END IF
*
*     Compute updated W.
*
      CALL DCOPY( K, W, 1, S, 1 )
*
*     Initialize W(I) = Q(I,I)
*
      CALL DCOPY( K, Q, LDQ+1, W, 1 )
      DO 60 J = 1, K
         DO 40 I = 1, J - 1
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
   40    CONTINUE
         DO 50 I = J + 1, K
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
   50    CONTINUE
   60 CONTINUE
      DO 70 I = 1, K
         W( I ) = SIGN( SQRT( -W( I ) ), S( I ) )
   70 CONTINUE
*
*     Compute eigenvectors of the modified rank-1 modification.
*
      DO 100 J = 1, K
         DO 80 I = 1, K
            S( I ) = W( I ) / Q( I, J )
   80    CONTINUE
         TEMP = DNRM2( K, S, 1 )
         DO 90 I = 1, K
            II = INDX( I )
            Q( I, J ) = S( II ) / TEMP
   90    CONTINUE
  100 CONTINUE
*
*     Compute the updated eigenvectors.
*
  110 CONTINUE
*
      N2 = N - N1
      N12 = CTOT( 1 ) + CTOT( 2 )
      N23 = CTOT( 2 ) + CTOT( 3 )
*
      CALL DLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 )
      IQ2 = N1*N12 + 1
      IF( N23.NE.0 ) THEN
         CALL DGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23,
     $               ZERO, Q( N1+1, 1 ), LDQ )
      ELSE
         CALL DLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ )
      END IF
*
      CALL DLACPY( 'A', N12, K, Q, LDQ, S, N12 )
      IF( N12.NE.0 ) THEN
         CALL DGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q,
     $               LDQ )
      ELSE
         CALL DLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ )
      END IF
*
*
  120 CONTINUE
      RETURN
*
*     End of DLAED3
*
      END