SUBROUTINE CGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            IHI, ILO, INFO, LDA, N
*     ..
*     .. Array Arguments ..
      REAL               SCALE( * )
      COMPLEX            A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CGEBAL balances a general complex matrix A.  This involves, first,
*  permuting A by a similarity transformation to isolate eigenvalues
*  in the first 1 to ILO-1 and last IHI+1 to N elements on the
*  diagonal; and second, applying a diagonal similarity transformation
*  to rows and columns ILO to IHI to make the rows and columns as
*  close in norm as possible.  Both steps are optional.
*
*  Balancing may reduce the 1-norm of the matrix, and improve the
*  accuracy of the computed eigenvalues and/or eigenvectors.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies the operations to be performed on A:
*          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
*                  for i = 1,...,N;
*          = 'P':  permute only;
*          = 'S':  scale only;
*          = 'B':  both permute and scale.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the input matrix A.
*          On exit,  A is overwritten by the balanced matrix.
*          If JOB = 'N', A is not referenced.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  ILO     (output) INTEGER
*  IHI     (output) INTEGER
*          ILO and IHI are set to integers such that on exit
*          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
*          If JOB = 'N' or 'S', ILO = 1 and IHI = N.
*
*  SCALE   (output) REAL array, dimension (N)
*          Details of the permutations and scaling factors applied to
*          A.  If P(j) is the index of the row and column interchanged
*          with row and column j and D(j) is the scaling factor
*          applied to row and column j, then
*          SCALE(j) = P(j)    for j = 1,...,ILO-1
*                   = D(j)    for j = ILO,...,IHI
*                   = P(j)    for j = IHI+1,...,N.
*          The order in which the interchanges are made is N to IHI+1,
*          then 1 to ILO-1.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The permutations consist of row and column interchanges which put
*  the matrix in the form
*
*             ( T1   X   Y  )
*     P A P = (  0   B   Z  )
*             (  0   0   T2 )
*
*  where T1 and T2 are upper triangular matrices whose eigenvalues lie
*  along the diagonal.  The column indices ILO and IHI mark the starting
*  and ending columns of the submatrix B. Balancing consists of applying
*  a diagonal similarity transformation inv(D) * B * D to make the
*  1-norms of each row of B and its corresponding column nearly equal.
*  The output matrix is
*
*     ( T1     X*D          Y    )
*     (  0  inv(D)*B*D  inv(D)*Z ).
*     (  0      0           T2   )
*
*  Information about the permutations P and the diagonal matrix D is
*  returned in the vector SCALE.
*
*  This subroutine is based on the EISPACK routine CBAL.
*
*  Modified by Tzu-Yi Chen, Computer Science Division, University of
*    California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      REAL               SCLFAC
      PARAMETER          ( SCLFAC = 2.0E+0 )
      REAL               FACTOR
      PARAMETER          ( FACTOR = 0.95E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOCONV
      INTEGER            I, ICA, IEXC, IRA, J, K, L, M
      REAL               C, CA, F, G, R, RA, S, SFMAX1, SFMAX2, SFMIN1,
     $                   SFMIN2
      COMPLEX            CDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICAMAX
      REAL               SLAMCH
      EXTERNAL           LSAME, ICAMAX, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CSSCAL, CSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, MIN, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.LSAME( JOB, 'P' ) .AND.
     $    .NOT.LSAME( JOB, 'S' ) .AND. .NOT.LSAME( JOB, 'B' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEBAL', -INFO )
         RETURN
      END IF
*
      K = 1
      L = N
*
      IF( N.EQ.0 )
     $   GO TO 210
*
      IF( LSAME( JOB, 'N' ) ) THEN
         DO 10 I = 1, N
            SCALE( I ) = ONE
   10    CONTINUE
         GO TO 210
      END IF
*
      IF( LSAME( JOB, 'S' ) )
     $   GO TO 120
*
*     Permutation to isolate eigenvalues if possible
*
      GO TO 50
*
*     Row and column exchange.
*
   20 CONTINUE
      SCALE( M ) = J
      IF( J.EQ.M )
     $   GO TO 30
*
      CALL CSWAP( L, A( 1, J ), 1, A( 1, M ), 1 )
      CALL CSWAP( N-K+1, A( J, K ), LDA, A( M, K ), LDA )
*
   30 CONTINUE
      GO TO ( 40, 80 )IEXC
*
*     Search for rows isolating an eigenvalue and push them down.
*
   40 CONTINUE
      IF( L.EQ.1 )
     $   GO TO 210
      L = L - 1
*
   50 CONTINUE
      DO 70 J = L, 1, -1
*
         DO 60 I = 1, L
            IF( I.EQ.J )
     $         GO TO 60
            IF( REAL( A( J, I ) ).NE.ZERO .OR. AIMAG( A( J, I ) ).NE.
     $          ZERO )GO TO 70
   60    CONTINUE
*
         M = L
         IEXC = 1
         GO TO 20
   70 CONTINUE
*
      GO TO 90
*
*     Search for columns isolating an eigenvalue and push them left.
*
   80 CONTINUE
      K = K + 1
*
   90 CONTINUE
      DO 110 J = K, L
*
         DO 100 I = K, L
            IF( I.EQ.J )
     $         GO TO 100
            IF( REAL( A( I, J ) ).NE.ZERO .OR. AIMAG( A( I, J ) ).NE.
     $          ZERO )GO TO 110
  100    CONTINUE
*
         M = K
         IEXC = 2
         GO TO 20
  110 CONTINUE
*
  120 CONTINUE
      DO 130 I = K, L
         SCALE( I ) = ONE
  130 CONTINUE
*
      IF( LSAME( JOB, 'P' ) )
     $   GO TO 210
*
*     Balance the submatrix in rows K to L.
*
*     Iterative loop for norm reduction
*
      SFMIN1 = SLAMCH( 'S' ) / SLAMCH( 'P' )
      SFMAX1 = ONE / SFMIN1
      SFMIN2 = SFMIN1*SCLFAC
      SFMAX2 = ONE / SFMIN2
  140 CONTINUE
      NOCONV = .FALSE.
*
      DO 200 I = K, L
         C = ZERO
         R = ZERO
*
         DO 150 J = K, L
            IF( J.EQ.I )
     $         GO TO 150
            C = C + CABS1( A( J, I ) )
            R = R + CABS1( A( I, J ) )
  150    CONTINUE
         ICA = ICAMAX( L, A( 1, I ), 1 )
         CA = ABS( A( ICA, I ) )
         IRA = ICAMAX( N-K+1, A( I, K ), LDA )
         RA = ABS( A( I, IRA+K-1 ) )
*
*        Guard against zero C or R due to underflow.
*
         IF( C.EQ.ZERO .OR. R.EQ.ZERO )
     $      GO TO 200
         G = R / SCLFAC
         F = ONE
         S = C + R
  160    CONTINUE
         IF( C.GE.G .OR. MAX( F, C, CA ).GE.SFMAX2 .OR.
     $       MIN( R, G, RA ).LE.SFMIN2 )GO TO 170
         F = F*SCLFAC
         C = C*SCLFAC
         CA = CA*SCLFAC
         R = R / SCLFAC
         G = G / SCLFAC
         RA = RA / SCLFAC
         GO TO 160
*
  170    CONTINUE
         G = C / SCLFAC
  180    CONTINUE
         IF( G.LT.R .OR. MAX( R, RA ).GE.SFMAX2 .OR.
     $       MIN( F, C, G, CA ).LE.SFMIN2 )GO TO 190
         F = F / SCLFAC
         C = C / SCLFAC
         G = G / SCLFAC
         CA = CA / SCLFAC
         R = R*SCLFAC
         RA = RA*SCLFAC
         GO TO 180
*
*        Now balance.
*
  190    CONTINUE
         IF( ( C+R ).GE.FACTOR*S )
     $      GO TO 200
         IF( F.LT.ONE .AND. SCALE( I ).LT.ONE ) THEN
            IF( F*SCALE( I ).LE.SFMIN1 )
     $         GO TO 200
         END IF
         IF( F.GT.ONE .AND. SCALE( I ).GT.ONE ) THEN
            IF( SCALE( I ).GE.SFMAX1 / F )
     $         GO TO 200
         END IF
         G = ONE / F
         SCALE( I ) = SCALE( I )*F
         NOCONV = .TRUE.
*
         CALL CSSCAL( N-K+1, G, A( I, K ), LDA )
         CALL CSSCAL( L, F, A( 1, I ), 1 )
*
  200 CONTINUE
*
      IF( NOCONV )
     $   GO TO 140
*
  210 CONTINUE
      ILO = K
      IHI = L
*
      RETURN
*
*     End of CGEBAL
*
      END