LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlanht()

double precision function zlanht ( character norm,
integer n,
double precision, dimension( * ) d,
complex*16, dimension( * ) e )

ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.

Download ZLANHT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLANHT  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> complex Hermitian tridiagonal matrix A.
!> 
Returns
ZLANHT
!>
!>    ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in ZLANHT as described
!>          above.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is
!>          set to zero.
!> 
[in]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal elements of A.
!> 
[in]E
!>          E is COMPLEX*16 array, dimension (N-1)
!>          The (n-1) sub-diagonal or super-diagonal elements of A.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 98 of file zlanht.f.

99*
100* -- LAPACK auxiliary routine --
101* -- LAPACK is a software package provided by Univ. of Tennessee, --
102* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
103*
104* .. Scalar Arguments ..
105 CHARACTER NORM
106 INTEGER N
107* ..
108* .. Array Arguments ..
109 DOUBLE PRECISION D( * )
110 COMPLEX*16 E( * )
111* ..
112*
113* =====================================================================
114*
115* .. Parameters ..
116 DOUBLE PRECISION ONE, ZERO
117 parameter( one = 1.0d+0, zero = 0.0d+0 )
118* ..
119* .. Local Scalars ..
120 INTEGER I
121 DOUBLE PRECISION ANORM, SCALE, SUM
122* ..
123* .. External Functions ..
124 LOGICAL LSAME, DISNAN
125 EXTERNAL lsame, disnan
126* ..
127* .. External Subroutines ..
128 EXTERNAL dlassq, zlassq
129* ..
130* .. Intrinsic Functions ..
131 INTRINSIC abs, max, sqrt
132* ..
133* .. Executable Statements ..
134*
135 IF( n.LE.0 ) THEN
136 anorm = zero
137 ELSE IF( lsame( norm, 'M' ) ) THEN
138*
139* Find max(abs(A(i,j))).
140*
141 anorm = abs( d( n ) )
142 DO 10 i = 1, n - 1
143 sum = abs( d( i ) )
144 IF( anorm .LT. sum .OR. disnan( sum ) ) anorm = sum
145 sum = abs( e( i ) )
146 IF( anorm .LT. sum .OR. disnan( sum ) ) anorm = sum
147 10 CONTINUE
148 ELSE IF( lsame( norm, 'O' ) .OR. norm.EQ.'1' .OR.
149 $ lsame( norm, 'I' ) ) THEN
150*
151* Find norm1(A).
152*
153 IF( n.EQ.1 ) THEN
154 anorm = abs( d( 1 ) )
155 ELSE
156 anorm = abs( d( 1 ) )+abs( e( 1 ) )
157 sum = abs( e( n-1 ) )+abs( d( n ) )
158 IF( anorm .LT. sum .OR. disnan( sum ) ) anorm = sum
159 DO 20 i = 2, n - 1
160 sum = abs( d( i ) )+abs( e( i ) )+abs( e( i-1 ) )
161 IF( anorm .LT. sum .OR. disnan( sum ) ) anorm = sum
162 20 CONTINUE
163 END IF
164 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
165 $ ( lsame( norm, 'E' ) ) ) THEN
166*
167* Find normF(A).
168*
169 scale = zero
170 sum = one
171 IF( n.GT.1 ) THEN
172 CALL zlassq( n-1, e, 1, scale, sum )
173 sum = 2*sum
174 END IF
175 CALL dlassq( n, d, 1, scale, sum )
176 anorm = scale*sqrt( sum )
177 END IF
178*
179 zlanht = anorm
180 RETURN
181*
182* End of ZLANHT
183*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function zlanht(norm, n, d, e)
ZLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlanht.f:99
subroutine zlassq(n, x, incx, scale, sumsq)
ZLASSQ updates a sum of squares represented in scaled form.
Definition zlassq.f90:122
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: