![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
| subroutine cunhr_col | ( | integer | m, |
| integer | n, | ||
| integer | nb, | ||
| complex, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| complex, dimension( ldt, * ) | t, | ||
| integer | ldt, | ||
| complex, dimension( * ) | d, | ||
| integer | info ) |
CUNHR_COL
Download CUNHR_COL + dependencies [TGZ] [ZIP] [TXT]
!> !> CUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns !> as input, stored in A, and performs Householder Reconstruction (HR), !> i.e. reconstructs Householder vectors V(i) implicitly representing !> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S, !> where S is an N-by-N diagonal matrix with diagonal entries !> equal to +1 or -1. The Householder vectors (columns V(i) of V) are !> stored in A on output, and the diagonal entries of S are stored in D. !> Block reflectors are also returned in T !> (same output format as CGEQRT). !>
| [in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
| [in] | N | !> N is INTEGER !> The number of columns of the matrix A. M >= N >= 0. !> |
| [in] | NB | !> NB is INTEGER !> The column block size to be used in the reconstruction !> of Householder column vector blocks in the array A and !> corresponding block reflectors in the array T. NB >= 1. !> (Note that if NB > N, then N is used instead of NB !> as the column block size.) !> |
| [in,out] | A | !> A is COMPLEX array, dimension (LDA,N) !> !> On entry: !> !> The array A contains an M-by-N orthonormal matrix Q_in, !> i.e the columns of A are orthogonal unit vectors. !> !> On exit: !> !> The elements below the diagonal of A represent the unit !> lower-trapezoidal matrix V of Householder column vectors !> V(i). The unit diagonal entries of V are not stored !> (same format as the output below the diagonal in A from !> CGEQRT). The matrix T and the matrix V stored on output !> in A implicitly define Q_out. !> !> The elements above the diagonal contain the factor U !> of the LU-decomposition: !> Q_in - ( S ) = V * U !> ( 0 ) !> where 0 is a (M-N)-by-(M-N) zero matrix. !> |
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
| [out] | T | !> T is COMPLEX array, !> dimension (LDT, N) !> !> Let NOCB = Number_of_output_col_blocks !> = CEIL(N/NB) !> !> On exit, T(1:NB, 1:N) contains NOCB upper-triangular !> block reflectors used to define Q_out stored in compact !> form as a sequence of upper-triangular NB-by-NB column !> blocks (same format as the output T in CGEQRT). !> The matrix T and the matrix V stored on output in A !> implicitly define Q_out. NOTE: The lower triangles !> below the upper-triangular blocks will be filled with !> zeros. See Further Details. !> |
| [in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. !> LDT >= max(1,min(NB,N)). !> |
| [out] | D | !> D is COMPLEX array, dimension min(M,N). !> The elements can be only plus or minus one. !> !> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where !> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing !> i-1 steps of “modified” Gaussian elimination. !> See Further Details. !> |
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!>
!> The computed M-by-M unitary factor Q_out is defined implicitly as
!> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
!> the compact WY-representation format in the corresponding blocks of
!> matrices V (stored in A) and T.
!>
!> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
!> matrix A contains the column vectors V(i) in NB-size column
!> blocks VB(j). For example, VB(1) contains the columns
!> V(1), V(2), ... V(NB). NOTE: The unit entries on
!> the diagonal of Y are not stored in A.
!>
!> The number of column blocks is
!>
!> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
!>
!> where each block is of order NB except for the last block, which
!> is of order LAST_NB = N - (NOCB-1)*NB.
!>
!> For example, if M=6, N=5 and NB=2, the matrix V is
!>
!>
!> V = ( VB(1), VB(2), VB(3) ) =
!>
!> = ( 1 )
!> ( v21 1 )
!> ( v31 v32 1 )
!> ( v41 v42 v43 1 )
!> ( v51 v52 v53 v54 1 )
!> ( v61 v62 v63 v54 v65 )
!>
!>
!> For each of the column blocks VB(i), an upper-triangular block
!> reflector TB(i) is computed. These blocks are stored as
!> a sequence of upper-triangular column blocks in the NB-by-N
!> matrix T. The size of each TB(i) block is NB-by-NB, except
!> for the last block, whose size is LAST_NB-by-LAST_NB.
!>
!> For example, if M=6, N=5 and NB=2, the matrix T is
!>
!> T = ( TB(1), TB(2), TB(3) ) =
!>
!> = ( t11 t12 t13 t14 t15 )
!> ( t22 t24 )
!>
!>
!> The M-by-M factor Q_out is given as a product of NOCB
!> unitary M-by-M matrices Q_out(i).
!>
!> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
!>
!> where each matrix Q_out(i) is given by the WY-representation
!> using corresponding blocks from the matrices V and T:
!>
!> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
!>
!> where I is the identity matrix. Here is the formula with matrix
!> dimensions:
!>
!> Q(i){M-by-M} = I{M-by-M} -
!> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
!>
!> where INB = NB, except for the last block NOCB
!> for which INB=LAST_NB.
!>
!> =====
!> NOTE:
!> =====
!>
!> If Q_in is the result of doing a QR factorization
!> B = Q_in * R_in, then:
!>
!> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
!>
!> So if one wants to interpret Q_out as the result
!> of the QR factorization of B, then the corresponding R_out
!> should be equal to R_out = S * R_in, i.e. some rows of R_in
!> should be multiplied by -1.
!>
!> For the details of the algorithm, see [1].
!>
!> [1] ,
!> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
!> E. Solomonik, J. Parallel Distrib. Comput.,
!> vol. 85, pp. 3-31, 2015.
!> !> !> November 2019, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !>
Definition at line 256 of file cunhr_col.f.