LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlaed1()

subroutine dlaed1 ( integer n,
double precision, dimension( * ) d,
double precision, dimension( ldq, * ) q,
integer ldq,
integer, dimension( * ) indxq,
double precision rho,
integer cutpnt,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

DLAED1 used by DSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.

Download DLAED1 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DLAED1 computes the updated eigensystem of a diagonal
!> matrix after modification by a rank-one symmetric matrix.  This
!> routine is used only for the eigenproblem which requires all
!> eigenvalues and eigenvectors of a tridiagonal matrix.  DLAED7 handles
!> the case in which eigenvalues only or eigenvalues and eigenvectors
!> of a full symmetric matrix (which was reduced to tridiagonal form)
!> are desired.
!>
!>   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
!>
!>    where Z = Q**T*u, u is a vector of length N with ones in the
!>    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
!>
!>    The eigenvectors of the original matrix are stored in Q, and the
!>    eigenvalues are in D.  The algorithm consists of three stages:
!>
!>       The first stage consists of deflating the size of the problem
!>       when there are multiple eigenvalues or if there is a zero in
!>       the Z vector.  For each such occurrence the dimension of the
!>       secular equation problem is reduced by one.  This stage is
!>       performed by the routine DLAED2.
!>
!>       The second stage consists of calculating the updated
!>       eigenvalues. This is done by finding the roots of the secular
!>       equation via the routine DLAED4 (as called by DLAED3).
!>       This routine also calculates the eigenvectors of the current
!>       problem.
!>
!>       The final stage consists of computing the updated eigenvectors
!>       directly using the updated eigenvalues.  The eigenvectors for
!>       the current problem are multiplied with the eigenvectors from
!>       the overall problem.
!> 
Parameters
[in]N
!>          N is INTEGER
!>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
!> 
[in,out]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>         On entry, the eigenvalues of the rank-1-perturbed matrix.
!>         On exit, the eigenvalues of the repaired matrix.
!> 
[in,out]Q
!>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
!>         On entry, the eigenvectors of the rank-1-perturbed matrix.
!>         On exit, the eigenvectors of the repaired tridiagonal matrix.
!> 
[in]LDQ
!>          LDQ is INTEGER
!>         The leading dimension of the array Q.  LDQ >= max(1,N).
!> 
[in,out]INDXQ
!>          INDXQ is INTEGER array, dimension (N)
!>         On entry, the permutation which separately sorts the two
!>         subproblems in D into ascending order.
!>         On exit, the permutation which will reintegrate the
!>         subproblems back into sorted order,
!>         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
!> 
[in]RHO
!>          RHO is DOUBLE PRECISION
!>         The subdiagonal entry used to create the rank-1 modification.
!> 
[in]CUTPNT
!>          CUTPNT is INTEGER
!>         The location of the last eigenvalue in the leading sub-matrix.
!>         min(1,N) <= CUTPNT <= N/2.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (4*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = 1, an eigenvalue did not converge
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee

Definition at line 159 of file dlaed1.f.

162*
163* -- LAPACK computational routine --
164* -- LAPACK is a software package provided by Univ. of Tennessee, --
165* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
166*
167* .. Scalar Arguments ..
168 INTEGER CUTPNT, INFO, LDQ, N
169 DOUBLE PRECISION RHO
170* ..
171* .. Array Arguments ..
172 INTEGER INDXQ( * ), IWORK( * )
173 DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
174* ..
175*
176* =====================================================================
177*
178* .. Local Scalars ..
179 INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
180 $ IW, IZ, K, N1, N2, ZPP1
181* ..
182* .. External Subroutines ..
183 EXTERNAL dcopy, dlaed2, dlaed3, dlamrg,
184 $ xerbla
185* ..
186* .. Intrinsic Functions ..
187 INTRINSIC max, min
188* ..
189* .. Executable Statements ..
190*
191* Test the input parameters.
192*
193 info = 0
194*
195 IF( n.LT.0 ) THEN
196 info = -1
197 ELSE IF( ldq.LT.max( 1, n ) ) THEN
198 info = -4
199 ELSE IF( min( 1, n / 2 ).GT.cutpnt .OR. ( n / 2 ).LT.cutpnt ) THEN
200 info = -7
201 END IF
202 IF( info.NE.0 ) THEN
203 CALL xerbla( 'DLAED1', -info )
204 RETURN
205 END IF
206*
207* Quick return if possible
208*
209 IF( n.EQ.0 )
210 $ RETURN
211*
212* The following values are integer pointers which indicate
213* the portion of the workspace
214* used by a particular array in DLAED2 and DLAED3.
215*
216 iz = 1
217 idlmda = iz + n
218 iw = idlmda + n
219 iq2 = iw + n
220*
221 indx = 1
222 indxc = indx + n
223 coltyp = indxc + n
224 indxp = coltyp + n
225*
226*
227* Form the z-vector which consists of the last row of Q_1 and the
228* first row of Q_2.
229*
230 CALL dcopy( cutpnt, q( cutpnt, 1 ), ldq, work( iz ), 1 )
231 zpp1 = cutpnt + 1
232 CALL dcopy( n-cutpnt, q( zpp1, zpp1 ), ldq, work( iz+cutpnt ),
233 $ 1 )
234*
235* Deflate eigenvalues.
236*
237 CALL dlaed2( k, n, cutpnt, d, q, ldq, indxq, rho, work( iz ),
238 $ work( idlmda ), work( iw ), work( iq2 ),
239 $ iwork( indx ), iwork( indxc ), iwork( indxp ),
240 $ iwork( coltyp ), info )
241*
242 IF( info.NE.0 )
243 $ GO TO 20
244*
245* Solve Secular Equation.
246*
247 IF( k.NE.0 ) THEN
248 is = ( iwork( coltyp )+iwork( coltyp+1 ) )*cutpnt +
249 $ ( iwork( coltyp+1 )+iwork( coltyp+2 ) )*( n-cutpnt ) + iq2
250 CALL dlaed3( k, n, cutpnt, d, q, ldq, rho, work( idlmda ),
251 $ work( iq2 ), iwork( indxc ), iwork( coltyp ),
252 $ work( iw ), work( is ), info )
253 IF( info.NE.0 )
254 $ GO TO 20
255*
256* Prepare the INDXQ sorting permutation.
257*
258 n1 = k
259 n2 = n - k
260 CALL dlamrg( n1, n2, d, 1, -1, indxq )
261 ELSE
262 DO 10 i = 1, n
263 indxq( i ) = i
264 10 CONTINUE
265 END IF
266*
267 20 CONTINUE
268 RETURN
269*
270* End of DLAED1
271*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dlaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlambda, w, q2, indx, indxc, indxp, coltyp, info)
DLAED2 used by DSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matri...
Definition dlaed2.f:211
subroutine dlaed3(k, n, n1, d, q, ldq, rho, dlambda, q2, indx, ctot, w, s, info)
DLAED3 used by DSTEDC. Finds the roots of the secular equation and updates the eigenvectors....
Definition dlaed3.f:175
subroutine dlamrg(n1, n2, a, dtrd1, dtrd2, index)
DLAMRG creates a permutation list to merge the entries of two independently sorted sets into a single...
Definition dlamrg.f:97
Here is the call graph for this function:
Here is the caller graph for this function: