LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ slaed1()

subroutine slaed1 ( integer  n,
real, dimension( * )  d,
real, dimension( ldq, * )  q,
integer  ldq,
integer, dimension( * )  indxq,
real  rho,
integer  cutpnt,
real, dimension( * )  work,
integer, dimension( * )  iwork,
integer  info 
)

SLAED1 used by SSTEDC. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.

Download SLAED1 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SLAED1 computes the updated eigensystem of a diagonal
 matrix after modification by a rank-one symmetric matrix.  This
 routine is used only for the eigenproblem which requires all
 eigenvalues and eigenvectors of a tridiagonal matrix.  SLAED7 handles
 the case in which eigenvalues only or eigenvalues and eigenvectors
 of a full symmetric matrix (which was reduced to tridiagonal form)
 are desired.

   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)

    where Z = Q**T*u, u is a vector of length N with ones in the
    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.

    The eigenvectors of the original matrix are stored in Q, and the
    eigenvalues are in D.  The algorithm consists of three stages:

       The first stage consists of deflating the size of the problem
       when there are multiple eigenvalues or if there is a zero in
       the Z vector.  For each such occurrence the dimension of the
       secular equation problem is reduced by one.  This stage is
       performed by the routine SLAED2.

       The second stage consists of calculating the updated
       eigenvalues. This is done by finding the roots of the secular
       equation via the routine SLAED4 (as called by SLAED3).
       This routine also calculates the eigenvectors of the current
       problem.

       The final stage consists of computing the updated eigenvectors
       directly using the updated eigenvalues.  The eigenvectors for
       the current problem are multiplied with the eigenvectors from
       the overall problem.
Parameters
[in]N
          N is INTEGER
         The dimension of the symmetric tridiagonal matrix.  N >= 0.
[in,out]D
          D is REAL array, dimension (N)
         On entry, the eigenvalues of the rank-1-perturbed matrix.
         On exit, the eigenvalues of the repaired matrix.
[in,out]Q
          Q is REAL array, dimension (LDQ,N)
         On entry, the eigenvectors of the rank-1-perturbed matrix.
         On exit, the eigenvectors of the repaired tridiagonal matrix.
[in]LDQ
          LDQ is INTEGER
         The leading dimension of the array Q.  LDQ >= max(1,N).
[in,out]INDXQ
          INDXQ is INTEGER array, dimension (N)
         On entry, the permutation which separately sorts the two
         subproblems in D into ascending order.
         On exit, the permutation which will reintegrate the
         subproblems back into sorted order,
         i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
[in]RHO
          RHO is REAL
         The subdiagonal entry used to create the rank-1 modification.
[in]CUTPNT
          CUTPNT is INTEGER
         The location of the last eigenvalue in the leading sub-matrix.
         min(1,N) <= CUTPNT <= N/2.
[out]WORK
          WORK is REAL array, dimension (4*N + N**2)
[out]IWORK
          IWORK is INTEGER array, dimension (4*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, an eigenvalue did not converge
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Modified by Francoise Tisseur, University of Tennessee

Definition at line 161 of file slaed1.f.

163*
164* -- LAPACK computational routine --
165* -- LAPACK is a software package provided by Univ. of Tennessee, --
166* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
167*
168* .. Scalar Arguments ..
169 INTEGER CUTPNT, INFO, LDQ, N
170 REAL RHO
171* ..
172* .. Array Arguments ..
173 INTEGER INDXQ( * ), IWORK( * )
174 REAL D( * ), Q( LDQ, * ), WORK( * )
175* ..
176*
177* =====================================================================
178*
179* .. Local Scalars ..
180 INTEGER COLTYP, CPP1, I, IDLMDA, INDX, INDXC, INDXP,
181 $ IQ2, IS, IW, IZ, K, N1, N2
182* ..
183* .. External Subroutines ..
184 EXTERNAL scopy, slaed2, slaed3, slamrg, xerbla
185* ..
186* .. Intrinsic Functions ..
187 INTRINSIC max, min
188* ..
189* .. Executable Statements ..
190*
191* Test the input parameters.
192*
193 info = 0
194*
195 IF( n.LT.0 ) THEN
196 info = -1
197 ELSE IF( ldq.LT.max( 1, n ) ) THEN
198 info = -4
199 ELSE IF( min( 1, n / 2 ).GT.cutpnt .OR. ( n / 2 ).LT.cutpnt ) THEN
200 info = -7
201 END IF
202 IF( info.NE.0 ) THEN
203 CALL xerbla( 'SLAED1', -info )
204 RETURN
205 END IF
206*
207* Quick return if possible
208*
209 IF( n.EQ.0 )
210 $ RETURN
211*
212* The following values are integer pointers which indicate
213* the portion of the workspace
214* used by a particular array in SLAED2 and SLAED3.
215*
216 iz = 1
217 idlmda = iz + n
218 iw = idlmda + n
219 iq2 = iw + n
220*
221 indx = 1
222 indxc = indx + n
223 coltyp = indxc + n
224 indxp = coltyp + n
225*
226*
227* Form the z-vector which consists of the last row of Q_1 and the
228* first row of Q_2.
229*
230 CALL scopy( cutpnt, q( cutpnt, 1 ), ldq, work( iz ), 1 )
231 cpp1 = cutpnt + 1
232 CALL scopy( n-cutpnt, q( cpp1, cpp1 ), ldq, work( iz+cutpnt ), 1 )
233*
234* Deflate eigenvalues.
235*
236 CALL slaed2( k, n, cutpnt, d, q, ldq, indxq, rho, work( iz ),
237 $ work( idlmda ), work( iw ), work( iq2 ),
238 $ iwork( indx ), iwork( indxc ), iwork( indxp ),
239 $ iwork( coltyp ), info )
240*
241 IF( info.NE.0 )
242 $ GO TO 20
243*
244* Solve Secular Equation.
245*
246 IF( k.NE.0 ) THEN
247 is = ( iwork( coltyp )+iwork( coltyp+1 ) )*cutpnt +
248 $ ( iwork( coltyp+1 )+iwork( coltyp+2 ) )*( n-cutpnt ) + iq2
249 CALL slaed3( k, n, cutpnt, d, q, ldq, rho, work( idlmda ),
250 $ work( iq2 ), iwork( indxc ), iwork( coltyp ),
251 $ work( iw ), work( is ), info )
252 IF( info.NE.0 )
253 $ GO TO 20
254*
255* Prepare the INDXQ sorting permutation.
256*
257 n1 = k
258 n2 = n - k
259 CALL slamrg( n1, n2, d, 1, -1, indxq )
260 ELSE
261 DO 10 i = 1, n
262 indxq( i ) = i
263 10 CONTINUE
264 END IF
265*
266 20 CONTINUE
267 RETURN
268*
269* End of SLAED1
270*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine slaed2(k, n, n1, d, q, ldq, indxq, rho, z, dlambda, w, q2, indx, indxc, indxp, coltyp, info)
SLAED2 used by SSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matri...
Definition slaed2.f:212
subroutine slaed3(k, n, n1, d, q, ldq, rho, dlambda, q2, indx, ctot, w, s, info)
SLAED3 used by SSTEDC. Finds the roots of the secular equation and updates the eigenvectors....
Definition slaed3.f:177
subroutine slamrg(n1, n2, a, strd1, strd2, index)
SLAMRG creates a permutation list to merge the entries of two independently sorted sets into a single...
Definition slamrg.f:99
Here is the call graph for this function:
Here is the caller graph for this function: